Graphene Polymer Nanocomposites for Fuel Cells

  • Jinghan Zhu
  • Fei Liu
  • Nasir Mahmood
  • Yanglong HouEmail author
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)


Fuel cells have long been considered as highly efficient devices for energy conversion which transform chemical energy directly into electricity, without any venomous pollutants emitted into ambient environment. In recent years, graphene-polymer nanocomposites have attracted intense interest as functional components in fuel cells. This chapter focuses on the potential applications of graphene-polymer composites in fuel cells. Recent advancement in the synthesis of graphene, polymer, graphene-polymer composites will be presented. Then, latest explorations of graphene-polymer composites applied as membranes, anode and cathode materials will be summarized. Furthermore, the vital roles of graphene-polymer to support noble metal catalysts will be illustrated. Finally, prospects of graphene-polymer composites for fuel cells will be outlined for further development.


Graphene Polymer Nanocomposites Fuel cells Membrane Anode Cathode Electrocatalysts 





Carbon cloth


Chemically converted graphene


β-Cyclodextrin polymer


Cyclic voltammetry


Chemical vapor deposition


Modified graphene oxide


Direct methanol fuel cells


Direct formic acid fuel cells


Electrochemical active surface area


Expanded graphite


Electrochemically reducing graphene oxide


Glass carbon


Graphitic carbon nitride


Graphite felt


Graphene-based silica


Graphite nanoplatelet


Ggraphene nanosheets


Graphene oxide




Layer by layer


Linear sweep voltammetry


Microbial fuel cell




Nitrogen-doped graphene




Oxidized Ethylenedioxythiophene


Oxygen reduction reaction






Platinum black




Phosphate buffer solution


Poly(diallyldimethylammonium chloride)




Polyether ether ketone


Proton exchange membranes


Proton exchange membrane fuel cells




Poly(methacrylic acid sodium salt)


Poly(sodium 4-styrenesulfonate)






Polyvinyl alcohol




Reduced graphene oxide


Sulfonated graphene oxide


Sulfonated poly(ether sulfone)


Sulfonated polyimide


Sulfonated polyether ether ketone


Silicotungstic acid






  1. 1.
    Demirdöven N, Deutch J (2004) Hybrid Cars Now, Fuel Cell Cars Later. Science 305 (5686):974-976. doi: 10.1126/science.1093965
  2. 2.
    Steele BCH (2001) Material science and engineering: The enabling technology for the commercialisation of fuel cell systems. Journal of Materials Science 36 (5):1053-1068. doi: 10.1023/a:1004853019349
  3. 3.
    Winter M, Brodd RJ (2004) What Are Batteries, Fuel Cells, and Supercapacitors? Chemical Reviews 104 (10):4245-4270. doi: 10.1021/cr020730k
  4. 4.
    Borup R, Meyers J, Pivovar B, Kim YS, Mukundan R, Garland N, Myers D, Wilson M, Garzon F, Wood D, Zelenay P, More K, Stroh K, Zawodzinski T, Boncella J, McGrath JE, Inaba M, Miyatake K, Hori M, Ota K, Ogumi Z, Miyata S, Nishikata A, Siroma Z, Uchimoto Y, Yasuda K, Kimijima K-i, Iwashita N (2007) Scientific Aspects of Polymer Electrolyte Fuel Cell Durability and Degradation. Chemical Reviews 107 (10):3904-3951. doi: 10.1021/cr050182l
  5. 5.
    Grove WR (1839) On voltaic series and the combination of gases by platinum. Philosophical Magazine Series 3 14 (86):127-130. doi: 10.1080/14786443908649684
  6. 6.
    Markovic NMPNR, Ross PN (2000) New Electrocatalysts for Fuel Cells from Model Surfaces to Commercial Catalysts. CATTECH 4 (2):110-126. doi: 10.1023/a:1011963731898
  7. 7.
    Service RF (2006) New Polymer May Rev Up the Output of Fuel Cells Used to Power Cars. Science 312 (5770):35. doi: 10.1126/science.312.5770.35a
  8. 8.
    Brandon NP, Skinner S, Steele BCH (2003) Recent Advances in Materials for Fuel Cells. Annual Review of Materials Research 33 (1):183-213. doi: 10.1146/annurev.matsci.33.022802.094122
  9. 9.
    Zhao F, Slade RCT, Varcoe JR (2009) Techniques for the study and development of microbial fuel cells: an electrochemical perspective. Chemical Society Reviews 38 (7):1926-1939. doi: 10.1039/b819866g
  10. 10.
    Novoselov KS, Falko VI, Colombo L, Gellert PR, Schwab MG, Kim K (2012) A roadmap for graphene. Nature 490 (7419):192-200Google Scholar
  11. 11.
    Luo B, Liu S, Zhi L (2012) Chemical Approaches toward Graphene-Based Nanomaterials and their Applications in Energy-Related Areas. Small 8 (5):630-646. doi: 10.1002/smll.201101396
  12. 12.
    Sun Y, Wu Q, Shi G (2011) Graphene based new energy materials. Energy & Environmental Science 4 (4):1113-1132. doi: 10.1039/c0ee00683a
  13. 13.
    Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Advanced Materials 22 (35):3906-3924. doi: 10.1002/adma.201001068
  14. 14.
    Allen MJ, Tung VC, Kaner RB (2009) Honeycomb Carbon: A Review of Graphene. Chemical Reviews 110 (1):132-145. doi: 10.1021/cr900070d
  15. 15.
    Wang L, Lu X, Lei S, Song Y (2014) Graphene-based polyaniline nanocomposites: preparation, properties and applications. Journal of Materials Chemistry A 2 (13):4491-4509. doi: 10.1039/c3ta13462h
  16. 16.
    Sun Y, Shi G (2013) Graphene/polymer composites for energy applications. Journal of Polymer Science Part B: Polymer Physics 51 (4):231-253. doi: 10.1002/polb.23226
  17. 17.
    Xie J, Guo CX, Li C (2014) Construction of One-Dimensional Nanostructures on Graphene for Efficient Energy Conversion and Storage. Energy & Environmental Science. doi: 10.1039/c4ee00531g
  18. 18.
    Nanjundan AK, Baek J-B (2014) Electrochemical supercapacitors from conducting polyaniline-graphene platforms. Chemical Communications. doi: 10.1039/c4cc01049c
  19. 19.
    Ashok Kumar N, Baek J-B (2014) Electrochemical supercapacitors from conducting polyaniline-graphene platforms. Chemical Communications. doi: 10.1039/c4cc01049c
  20. 20.
    Wang Y, Xia Y (2013) Recent Progress in Supercapacitors: From Materials Design to System Construction. Advanced Materials 25 (37):5336-5342. doi: 10.1002/adma.201301932
  21. 21.
    Osiak M, Geaney H, Armstrong E, O’Dwyer C (2014) Structuring materials for lithium-ion batteries: advancements in nanomaterial structure, composition, and defined assembly on cell performance. Journal of Materials Chemistry A. doi: 10.1039/c4ta00534a
  22. 22.
    NOORDEN RV (2014) A Better Battery. Nature 507:26-28Google Scholar
  23. 23.
    Xin S, Guo Y-G, Wan L-J (2012) Nanocarbon Networks for Advanced Rechargeable Lithium Batteries. Accounts of Chemical Research 45 (10):1759-1769. doi: 10.1021/ar300094m
  24. 24.
    Palacin MR (2009) Recent advances in rechargeable battery materials: a chemist’s perspective. Chemical Society Reviews 38 (9):2565-2575. doi: 10.1039/b820555h
  25. 25.
    Li L, Wu Z, Yuan S, Zhang X (2014) Advances and Challenges for Flexible Energy Storage and Conversion Devices and Systems. Energy & Environmental Science. doi: 10.1039/c4ee00318g
  26. 26.
    Chua CK, Pumera M (2014) Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chemical Society Reviews. doi: 10.1039/c3cs60303b
  27. 27.
    Eda G, Fanchini G, Chhowalla M (2008) Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nano 3 (5):270-274. doi:
  28. 28.
    Huang H, Song Z, Wei N, Shi L, Mao Y, Ying Y, Sun L, Xu Z, Peng X (2013) Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes. Nat Commun 4. doi: 10.1038/ncomms3979
  29. 29.
    Zhang C, Mahmood N, Yin H, Hou Y (2014) Graphene-Based Nanomaterials for Energy Conversion and Storage. In: Handbook of Carbon Nano Materials, vol 6. World Scientific Series, pp 51-82. doi: 10.1142/9789814566704_0006
  30. 30.
    Kumar PV, Bardhan NM, Tongay S, Wu J, Belcher AM, Grossman JC (2013) Scalable enhancement of graphene oxide properties by thermally driven phase transformation. Nat Chem advance online publication. doi: 10.1038/nchem.1820
  31. 31.
    Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, Nguyen ST, Ruoff RS (2007) Preparation and characterization of graphene oxide paper. Nature 448 (7152):457-460. doi:
  32. 32.
    Hao R, Qian W, Zhang L, Hou Y (2008) Aqueous dispersions of TCNQ-anion-stabilized graphene sheets. Chemical Communications 0 (48):6576-6578. doi: 10.1039/b816971c
  33. 33.
    Qian W, Hao R, Hou Y, Tian Y, Shen C, Gao H, Liang X (2009) Solvothermal-assisted exfoliation process to produce graphene with high yield and high quality. Nano Res 2 (9):706-712. doi: 10.1007/s12274-009-9074-z
  34. 34.
    Mahmood N, Islam M, Hameed A, Saeed S (2013) Polyamide 6/Multiwalled Carbon Nanotubes Nanocomposites with Modified Morphology and Thermal Properties. Polymers 5 (4):1380-1391Google Scholar
  35. 35.
    Mahmood N, Islam M, Hameed A, Saeed S, Khan AN (2013) Polyamide-6-based composites reinforced with pristine or functionalized multi-walled carbon nanotubes produced using melt extrusion technique. Journal of Composite Materials:0021998313484779Google Scholar
  36. 36.
    Bao C, Guo Y, Song L, Hu Y (2011) Poly(vinyl alcohol) nanocomposites based on graphene and graphite oxide: a comparative investigation of property and mechanism. Journal of Materials Chemistry 21 (36):13942-13950. doi: 10.1039/c1jm11662b
  37. 37.
    Khilari S, Pandit S, Ghangrekar MM, Pradhan D, Das D (2013) Graphene Oxide-Impregnated PVA–STA Composite Polymer Electrolyte Membrane Separator for Power Generation in a Single-Chambered Microbial Fuel Cell. Industrial & Engineering Chemistry Research 52 (33):11597-11606. doi: 10.1021/ie4016045
  38. 38.
    Enotiadis A, Angjeli K, Baldino N, Nicotera I, Gournis D (2012) Graphene-Based Nafion Nanocomposite Membranes: Enhanced Proton Transport and Water Retention by Novel Organo-functionalized Graphene Oxide Nanosheets. Small 8 (21):3338-3349. doi: 10.1002/smll.201200609
  39. 39.
    Kim H, Miura Y, Macosko CW (2010) Graphene/Polyurethane Nanocomposites for Improved Gas Barrier and Electrical Conductivity. Chemistry of Materials 22 (11):3441-3450. doi: 10.1021/cm100477v
  40. 40.
    Sun X, Sun H, Li H, Peng H (2013) Developing Polymer Composite Materials: Carbon Nanotubes or Graphene? Advanced Materials 25 (37):5153-5176. doi: 10.1002/adma.201301926
  41. 41.
    Liang J, Huang Y, Zhang L, Wang Y, Ma Y, Guo T, Chen Y (2009) Molecular-Level Dispersion of Graphene into Poly(vinyl alcohol) and Effective Reinforcement of their Nanocomposites. Advanced Functional Materials 19 (14):2297-2302. doi: 10.1002/adfm.200801776
  42. 42.
    Hameed A, Islam M, ahmad I, Mahmood N, Saeed S, Javed H (2014) Thermal and mechanical properties of carbon nanotube/epoxy nanocomposites reinforced with pristine and functionalized multiwalled carbon nanotubes. Polymer Composites:n/a-n/a. doi: 10.1002/pc.23097
  43. 43.
    Chabot V, Higgins DC, Yu A, Xiao X, Chen Z, Zhang J (2014) A Review of Graphene and Graphene Oxide Sponge: Material Synthesis and Applications towards Energy and the Environment. Energy & Environmental Science. doi: 10.1039/c3ee43385d
  44. 44.
    Cao X, Yin Z, Zhang H (2014) Three-Dimensional Graphene Materials: Preparation, Structures and Application in Supercapacitors. Energy & Environmental Science. doi: 10.1039/c4ee00050a
  45. 45.
    Nardecchia S, Carriazo D, Ferrer ML, Gutierrez MC, del Monte F (2013) Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: synthesis and applications. Chemical Society Reviews 42 (2):794-830. doi: 10.1039/c2cs35353a
  46. 46.
    Jiang H, Lee PS, Li C (2013) 3D carbon based nanostructures for advanced supercapacitors. Energy & Environmental Science 6 (1):41-53. doi: 10.1039/c2ee23284g
  47. 47.
    Qiu L, Liu D, Wang Y, Cheng C, Zhou K, Ding J, Truong V-T, Li D (2014) Mechanically Robust, Electrically Conductive and Stimuli-Responsive Binary Network Hydrogels Enabled by Superelastic Graphene Aerogels. Advanced Materials 26 (20):3333-3337. doi: 10.1002/adma.201305359
  48. 48.
    Yin H, Zhang C, Liu F, Hou Y (2014) Hybrid of Iron Nitride and Nitrogen-Doped Graphene Aerogel as Synergistic Catalyst for Oxygen Reduction Reaction. Advanced Functional Materials24(20): 2930-2937. doi: 10.1002/adfm.201303902
  49. 49.
    Chen Z, Ren W, Gao L, Liu B, Pei S, Cheng H-M (2011) Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater 10 (6):424-428. doi:
  50. 50.
    He Y, Tong C, Geng L, Liu L, Lü C (2014) Enhanced performance of the sulfonated polyimide proton exchange membranes by graphene oxide: Size effect of graphene oxide. Journal of Membrane Science 458 (0):36-46. doi:
  51. 51.
    Choi BG, Hong J, Park YC, Jung DH, Hong WH, Hammond PT, Park H (2011) Innovative Polymer Nanocomposite Electrolytes: Nanoscale Manipulation of Ion Channels by Functionalized Graphenes. ACS Nano 5 (6):5167-5174. doi: 10.1021/nn2013113
  52. 52.
    Lin CW, Lu YS (2013) Highly ordered graphene oxide paper laminated with a Nafion membrane for direct methanol fuel cells. Journal of Power Sources 237 (0):187-194. doi:
  53. 53.
    Yuan T, Pu L, Huang Q, Zhang H, Li X, Yang H (2014) An effective methanol-blocking membrane modified with graphene oxide nanosheets for passive direct methanol fuel cells. Electrochimica Acta 117 (0):393-397. doi:
  54. 54.
    Ansari S, Kelarakis A, Estevez L, Giannelis EP (2010) Oriented Arrays of Graphene in a Polymer Matrix by in situ Reduction of Graphite Oxide Nanosheets. Small 6 (2):205-209. doi: 10.1002/smll.200900765
  55. 55.
    Lim Y-D, Seo D-W, Lee S-H, Choi S-Y, Lee S-Y, Jin L, Tan F, Kim W-G (2014) The Sulfonated poly(ether sulfone ketone) ionomers containing partial graphene of mesonaphthobifluorene for PEMFC. Electronic Materials Letters 10 (1):205-207. doi: 10.1007/s13391-013-7001-7
  56. 56.
    Kumar R, Mamlouk M, Scott K (2014) Sulfonated polyether ether ketone - sulfonated graphene oxide composite membranes for polymer electrolyte fuel cells. RSC Advances 4 (2):617-623. doi: 10.1039/c3ra42390e
  57. 57.
    Mishra AK, Kim NH, Jung D, Lee JH (2014) Enhanced mechanical properties and proton conductivity of Nafion–SPEEK–GO composite membranes for fuel cell applications. Journal of Membrane Science 458 (0):128-135. doi:
  58. 58.
    Gahlot S, Sharma PP, Kulshrestha V, Jha PK (2014) SGO/SPES-Based Highly Conducting Polymer Electrolyte Membranes for Fuel Cell Application. ACS Applied Materials & Interfaces 6 (8):5595-5601. doi: 10.1021/am5000504
  59. 59.
    Ye Y-S, Cheng M-Y, Xie X-L, Rick J, Huang Y-J, Chang F-C, Hwang B-J (2013) Alkali doped polyvinyl alcohol/graphene electrolyte for direct methanol alkaline fuel cells. Journal of Power Sources 239 (0):424-432. doi:
  60. 60.
    He Y, Wang J, Zhang H, Zhang T, Zhang B, Cao S, Liu J (2014) Polydopamine-modified graphene oxide nanocomposite membrane for proton exchange membrane fuel cell under anhydrous conditions. Journal of Materials Chemistry A. doi: 10.1039/c3ta15301k
  61. 61.
    Gong K, Du F, Xia Z, Durstock M, Dai L (2009) Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction. Science 323 (5915):760-764. doi: 10.1126/science.1168049
  62. 62.
    Zhang C, Hao R, Liao H, Hou Y (2013) Synthesis of amino-functionalized graphene as metal-free catalyst and exploration of the roles of various nitrogen states in oxygen reduction reaction. Nano Energy 2 (1):88-97. doi:
  63. 63.
    Wang S, Yu D, Dai L, Chang DW, Baek J-B (2011) Polyelectrolyte-Functionalized Graphene as Metal-Free Electrocatalysts for Oxygen Reduction. ACS Nano 5 (8):6202-6209. doi: 10.1021/nn200879h
  64. 64.
    Sun Y, Li C, Xu Y, Bai H, Yao Z, Shi G (2010) Chemically converted graphene as substrate for immobilizing and enhancing the activity of a polymeric catalyst. Chemical Communications 46 (26):4740-4742. doi: 10.1039/c001635g
  65. 65.
    Unni SM, Bhange SN, Anothumakkool B, Kurungot S (2013) Redox-Mediated Synthesis of Functionalised Graphene: A Strategy towards 2D Multifunctional Electrocatalysts for Energy Conversion Applications. ChemPlusChem 78 (10):1296-1303. doi: 10.1002/cplu.201300153
  66. 66.
    Zheng Y, Jiao Y, Jaroniec M, Jin Y, Qiao SZ (2012) Nanostructured Metal-Free Electrochemical Catalysts for Highly Efficient Oxygen Reduction. Small 8 (23):3550-3566. doi: 10.1002/smll.201200861
  67. 67.
    Thomas A, Fischer A, Goettmann F, Antonietti M, Muller J-O, Schlogl R, Carlsson JM (2008) Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. Journal of Materials Chemistry 18 (41):4893-4908. doi: 10.1039/b800274f
  68. 68.
    Wang Y, Wang X, Antonietti M (2012) Polymeric Graphitic Carbon Nitride as a Heterogeneous Organocatalyst: From Photochemistry to Multipurpose Catalysis to Sustainable Chemistry. Angewandte Chemie International Edition 51 (1):68-89. doi: 10.1002/anie.201101182
  69. 69.
    Lyth SM, Nabae Y, Moriya S, Kuroki S, Kakimoto M-a, Ozaki J-i, Miyata S (2009) Carbon Nitride as a Nonprecious Catalyst for Electrochemical Oxygen Reduction. The Journal of Physical Chemistry C 113 (47):20148-20151. doi: 10.1021/jp907928j
  70. 70.
    Zheng Y, Liu J, Liang J, Jaroniec M, Qiao SZ (2012) Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis. Energy & Environmental Science 5 (5):6717-6731. doi: 10.1039/c2ee03479d
  71. 71.
    Ritter KA, Lyding JW (2009) The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons. Nat Mater 8 (3):235-242. doi:
  72. 72.
    Deng D, Yu L, Pan X, Wang S, Chen X, Hu P, Sun L, Bao X (2011) Size effect of graphene on electrocatalytic activation of oxygen. Chemical Communications 47 (36):10016-10018. doi: 10.1039/c1cc13033a
  73. 73.
    Yang S, Feng X, Wang X, Müllen K (2011) Graphene-Based Carbon Nitride Nanosheets as Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reactions. Angewandte Chemie International Edition 50 (23):5339-5343. doi: 10.1002/anie.201100170
  74. 74.
    Wang X, Dai H (2010) Etching and narrowing of graphene from the edges. Nat Chem 2 (8):661-665. doi:
  75. 75.
    Li X, Wang X, Zhang L, Lee S, Dai H (2008) Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors. Science 319 (5867):1229-1232Google Scholar
  76. 76.
    Ren Y, Pan D, Li X, Fu F, Zhao Y, Wang X (2013) Effect of polyaniline-graphene nanosheets modified cathode on the performance of sediment microbial fuel cell. Journal of Chemical Technology & Biotechnology 88 (10):1946-1950. doi: 10.1002/jctb.4146
  77. 77.
    Lai L, Potts JR, Zhan D, Wang L, Poh CK, Tang C, Gong H, Shen Z, Lin J, Ruoff RS (2012) Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy & Environmental Science 5 (7):7936-7942. doi: 10.1039/c2ee21802j
  78. 78.
    Qu L, Liu Y, Baek J-B, Dai L (2010) Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells. ACS Nano 4 (3):1321-1326. doi: 10.1021/nn901850u
  79. 79.
    Kong X-K, Chen C-L, Chen Q-W (2014) Doped graphene for metal-free catalysis. Chemical Society Reviews. doi: 10.1039/c3cs60401b
  80. 80.
    Qian W, Cui X, Hao R, Hou Y, Zhang Z (2011) Facile Preparation of Nitrogen-Doped Few-Layer Graphene via Supercritical Reaction. ACS Applied Materials & Interfaces 3 (7):2259-2264. doi: 10.1021/am200479d
  81. 81.
    Shao Y, Zhang S, Engelhard MH, Li G, Shao G, Wang Y, Liu J, Aksay IA, Lin Y (2010) Nitrogen-doped graphene and its electrochemical applications. Journal of Materials Chemistry 20 (35):7491-7496. doi: 10.1039/c0jm00782j
  82. 82.
    Sheng Z-H, Shao L, Chen J-J, Bao W-J, Wang F-B, Xia X-H (2011) Catalyst-Free Synthesis of Nitrogen-Doped Graphene via Thermal Annealing Graphite Oxide with Melamine and Its Excellent Electrocatalysis. ACS Nano 5 (6):4350-4358. doi: 10.1021/nn103584t
  83. 83.
    Wang K, Wang J, Fan J, Lotya M, O’Neill A, Fox D, Feng Y, Zhang X, Jiang B, Zhao Q, Zhang H, Coleman JN, Zhang L, Blau WJ (2013) Ultrafast Saturable Absorption of Two-Dimensional MoS2 Nanosheets. ACS Nano. doi: 10.1021/nn403886t
  84. 84.
    Sun Y, Li C, Shi G (2012) Nanoporous nitrogen doped carbon modified graphene as electrocatalyst for oxygen reduction reaction. Journal of Materials Chemistry 22 (25):12810-12816. doi: 10.1039/c2jm31525d
  85. 85.
    Yong Y-C, Dong X-C, Chan-Park MB, Song H, Chen P (2012) Macroporous and Monolithic Anode Based on Polyaniline Hybridized Three-Dimensional Graphene for High-Performance Microbial Fuel Cells. ACS Nano 6 (3):2394-2400. doi: 10.1021/nn204656d
  86. 86.
    Wei W, Yang S, Zhou H, Lieberwirth I, Feng X, Müllen K (2013) 3D Graphene Foams Cross-linked with Pre-encapsulated Fe3O4 Nanospheres for Enhanced Lithium Storage. Advanced Materials 25 (21):2909-2914. doi: 10.1002/adma.201300445
  87. 87.
    Wu Z-S, Yang S, Sun Y, Parvez K, Feng X, Müllen K (2012) 3D Nitrogen-Doped Graphene Aerogel-Supported Fe3O4 Nanoparticles as Efficient Electrocatalysts for the Oxygen Reduction Reaction. Journal of the American Chemical Society 134 (22):9082-9085. doi: 10.1021/ja3030565
  88. 88.
    Hou J, Liu Z, Zhang P (2013) A new method for fabrication of graphene/polyaniline nanocomplex modified microbial fuel cell anodes. Journal of Power Sources 224 (0):139-144. doi:
  89. 89.
    Wang Y, Zhao C-e, Sun D, Zhang J-R, Zhu J-J (2013) A Graphene/Poly(3,4-ethylenedioxythiophene) Hybrid as an Anode for High-Performance Microbial Fuel Cells. ChemPlusChem 78 (8):823-829. doi: 10.1002/cplu.201300102
  90. 90.
    Lv Z, Chen Y, Wei H, Li F, Hu Y, Wei C, Feng C (2013) One-step electrosynthesis of polypyrrole/graphene oxide composites for microbial fuel cell application. Electrochimica Acta 111 (0):366-373. doi:
  91. 91.
    Zhang J, Yang H, Yang K, Fang J, Zou S, Luo Z, Wang H, Bae I-T, Jung DY (2010) Monodisperse Pt3Fe Nanocubes: Synthesis, Characterization, Self-Assembly, and Electrocatalytic Activity. Advanced Functional Materials 20 (21):3727-3733. doi: 10.1002/adfm.201000679
  92. 92.
    Wang Y, Sun Z, Kumbhar A, Luo Z, Wang C, Zhang J, Porter N, Xu C, Sun K, Martens B, Fang J (2013) Is CO adequate to facilitate the formation of Pt3 M (M = Fe, Ni and Co) nanocubes? Chemical Communications 49 (38):3955-3957. doi: 10.1039/c3cc41424h
  93. 93.
    Zhang J, Fang J (2009) A General Strategy for Preparation of Pt 3d-Transition Metal (Co, Fe, Ni) Nanocubes. Journal of the American Chemical Society 131 (51):18543-18547. doi: 10.1021/ja908245r
  94. 94.
    Yu Y, Yang W, Sun X, Zhu W, Li XZ, Sellmyer DJ, Sun S (2014) Monodisperse MPt (M = Fe, Co, Ni, Cu, Zn) Nanoparticles Prepared from a Facile Oleylamine Reduction of Metal Salts. Nano Letters. doi: 10.1021/nl500776e
  95. 95.
    Wu Y, Wang D, Niu Z, Chen P, Zhou G, Li Y (2012) A Strategy for Designing a Concave Pt–Ni Alloy through Controllable Chemical Etching. Angewandte Chemie International Edition 51 (50):12524-12528. doi: 10.1002/anie.201207491
  96. 96.
    Zhang J, Yang H, Fang J, Zou S (2010) Synthesis and Oxygen Reduction Activity of Shape-Controlled Pt3Ni Nanopolyhedra. Nano Letters 10 (2):638-644. doi: 10.1021/nl903717z
  97. 97.
    Stamenkovic VR, Fowler B, Mun BS, Wang G, Ross PN, Lucas CA, Marković NM (2007) Improved Oxygen Reduction Activity on Pt3Ni(111) via Increased Surface Site Availability. Science 315 (5811):493-497. doi: 10.1126/science.1135941
  98. 98.
    Zhang S, Shao Y, Liao H-g, Liu J, Aksay IA, Yin G, Lin Y (2011) Graphene Decorated with PtAu Alloy Nanoparticles: Facile Synthesis and Promising Application for Formic Acid Oxidation. Chemistry of Materials 23 (5):1079-1081. doi: 10.1021/cm101568z
  99. 99.
    Venkateswara Rao C, Cabrera CR, Ishikawa Y (2011) Graphene-Supported Pt–Au Alloy Nanoparticles: A Highly Efficient Anode for Direct Formic Acid Fuel Cells. The Journal of Physical Chemistry C 115 (44):21963-21970. doi: 10.1021/jp202561n
  100. 100.
    Liao H, Zhu J, Hou Y (2014) Synthesis and electrocatalytic properties of PtBi nanoplatelets and PdBi nanowires. Nanoscale 6 (2):1049-1055. doi: 10.1039/c3nr05590f
  101. 101.
    Ho SFF, Garcia AM, Guo S, He K, Su D, Liu S, Metin O, Sun S (2014) A Facile Route to Monodisperse MPd (M = Co or Cu) Alloy Nanoparticles and Their Catalysis for Electrooxidation of Formic Acid. Nanoscale. doi: 10.1039/c4nr01107d
  102. 102.
    Liao H, Hou Y (2013) Liquid-Phase Templateless Synthesis of Pt-on-Pd0.85Bi0.15 Nanowires and PtPdBi Porous Nanoparticles with Superior Electrocatalytic Activity. Chemistry of Materials 25 (3):457-465. doi: 10.1021/cm3037179
  103. 103.
    Zhang G, Li C, Liu J, Zhou L, Liu R, Han X, Huang H, Hu H, Liu Y, Kang Z (2014) One-step conversion from metal-organic frameworks to Co3O4@N-doped carbon nanocomposites towards highly efficient oxygen reduction catalysts. Journal of Materials Chemistry A. doi: 10.1039/c4ta00677a
  104. 104.
    Sa YJ, Kwon K, Cheon JY, Kleitz F, Joo SH (2013) Ordered mesoporous Co3O4 spinels as stable, bifunctional, noble metal-free oxygen electrocatalysts. Journal of Materials Chemistry A 1 (34):9992-10001. doi: 10.1039/c3ta11917c
  105. 105.
    Mahmood N, Zhang C, Jiang J, Liu F, Hou Y (2013) Multifunctional Co3S4/Graphene Composites for Lithium Ion Batteries and Oxygen Reduction Reaction. Chemistry – A European Journal 19 (16):5183-5190. doi: 10.1002/chem.201204549
  106. 106.
    Li Q, Xu P, Zhang B, Tsai H, Wang J, Wang H-L, Wu G (2013) One-step synthesis of Mn3O4/reduced graphene oxide nanocomposites for oxygen reduction in nonaqueous Li-O2 batteries. Chemical Communications 49 (92):10838-10840. doi: 10.1039/c3cc46441e
  107. 107.
    Tan Y, Xu C, Chen G, Fang X, Zheng N, Xie Q (2012) Facile Synthesis of Manganese-Oxide-Containing Mesoporous Nitrogen-Doped Carbon for Efficient Oxygen Reduction. Advanced Functional Materials 22 (21):4584-4591. doi: 10.1002/adfm.201201244
  108. 108.
    Ferrandon M, Kropf AJ, Myers DJ, Artyushkova K, Kramm U, Bogdanoff P, Wu G, Johnston CM, Zelenay P (2012) Multitechnique Characterization of a Polyaniline–Iron–Carbon Oxygen Reduction Catalyst. The Journal of Physical Chemistry C 116 (30):16001-16013. doi: 10.1021/jp302396g
  109. 109.
    Wu G, More KL, Johnston CM, Zelenay P (2011) High-Performance Electrocatalysts for Oxygen Reduction Derived from Polyaniline, Iron, and Cobalt. Science 332 (6028):443-447. doi: 10.1126/science.1200832
  110. 110.
    Jaouen F, Proietti E, Lefevre M, Chenitz R, Dodelet J-P, Wu G, Chung HT, Johnston CM, Zelenay P (2011) Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells. Energy & Environmental Science 4 (1):114-130. doi: 10.1039/c0ee00011f
  111. 111.
    Bashyam R, Zelenay P (2006) A class of non-precious metal composite catalysts for fuel cells. Nature 443 (7107):63-66. doi:
  112. 112.
    Zhang C, Hao R, Yin H, Liu F, Hou Y (2012) Iron phthalocyanine and nitrogen-doped graphene composite as a novel non-precious catalyst for the oxygen reduction reaction. Nanoscale 4 (23):7326-7329. doi: 10.1039/c2nr32612d
  113. 113.
    Wang Y-J, Wilkinson DP, Zhang J (2011) Noncarbon Support Materials for Polymer Electrolyte Membrane Fuel Cell Electrocatalysts. Chemical Reviews 111 (12):7625-7651. doi: 10.1021/cr100060r
  114. 114.
    Chen Z, Higgins D, Yu A, Zhang L, Zhang J (2011) A review on non-precious metal electrocatalysts for PEM fuel cells. Energy & Environmental Science 4 (9):3167-3192. doi: 10.1039/c0ee00558d
  115. 115.
    Guo S, Wen D, Zhai Y, Dong S, Wang E (2010) Platinum Nanoparticle Ensemble-on-Graphene Hybrid Nanosheet: One-Pot, Rapid Synthesis, and Used as New Electrode Material for Electrochemical Sensing. ACS Nano 4 (7):3959-3968. doi: 10.1021/nn100852h
  116. 116.
    Huang H, Wang X (2014) Recent progress on carbon-based support materials for electrocatalysts of direct methanol fuel cells. Journal of Materials Chemistry A. doi: 10.1039/c3ta14754a
  117. 117.
    Huang X, Li Z, Zhang X, He X, Lin S (2013) Preparation of Pt/{PDDA-GN/PSS-GN}n multilayer films and their electrocatalytic activity regarding methanol oxidation. Journal of Colloid and Interface Science 393 (0):300-305. doi:
  118. 118.
    Cheng Y, Jiang SP (2013) Highly effective and CO-tolerant PtRu electrocatalysts supported on poly(ethyleneimine) functionalized carbon nanotubes for direct methanol fuel cells. Electrochimica Acta 99 (0):124-132. doi:
  119. 119.
    Yang D-Q, Rochette J-F, Sacher E (2005) Spectroscopic Evidence for π–π Interaction between Poly(diallyl dimethylammonium) Chloride and Multiwalled Carbon Nanotubes. The Journal of Physical Chemistry B 109 (10):4481-4484. doi: 10.1021/jp044511+
  120. 120.
    Shao Y, Zhang S, Wang C, Nie Z, Liu J, Wang Y, Lin Y (2010) Highly durable graphene nanoplatelets supported Pt nanocatalysts for oxygen reduction. Journal of Power Sources 195 (15):4600-4605. doi:
  121. 121.
    Chen H, Wang Y, Dong S (2007) An Effective Hydrothermal Route for the Synthesis of Multiple PDDA-Protected Noble-Metal Nanostructures. Inorganic Chemistry 46 (25):10587-10593. doi: 10.1021/ic7009572
  122. 122.
    Jiang SP, Liu Z, Tang HL, Pan M (2006) Synthesis and characterization of PDDA-stabilized Pt nanoparticles for direct methanol fuel cells. Electrochimica Acta 51 (26):5721-5730. doi:
  123. 123.
    Qiu J-D, Wang G-C, Liang R-P, Xia X-H, Yu H-W (2011) Controllable Deposition of Platinum Nanoparticles on Graphene As an Electrocatalyst for Direct Methanol Fuel Cells. The Journal of Physical Chemistry C 115 (31):15639-15645. doi: 10.1021/jp200580u
  124. 124.
    Park JY, Kim S (2013) Preparation and electroactivity of polymer-functionalized graphene oxide-supported platinum nanoparticles catalysts. International Journal of Hydrogen Energy 38 (14):6275-6282. doi:
  125. 125.
    Le Z-G, Liu Z, Qian Y, Wang C (2012) A facile and efficient approach to decoration of graphene nanosheets with gold nanoparticles. Applied Surface Science 258 (14):5348-5353. doi:
  126. 126.
    Zhang S, Shao Y, Liao H, Engelhard MH, Yin G, Lin Y (2011) Polyelectrolyte-Induced Reduction of Exfoliated Graphite Oxide: A Facile Route to Synthesis of Soluble Graphene Nanosheets. ACS Nano 5 (3):1785-1791. doi: 10.1021/nn102467s
  127. 127.
    He W, Jiang H, Zhou Y, Yang S, Xue X, Zou Z, Zhang X, Akins DL, Yang H (2012) An efficient reduction route for the production of Pd–Pt nanoparticles anchored on graphene nanosheets for use as durable oxygen reduction electrocatalysts. Carbon 50 (1):265-274. doi:
  128. 128.
    Mayavan S, Jang H-S, Lee M-J, Choi SH, Choi S-M (2013) Enhancing the catalytic activity of Pt nanoparticles using poly sodium styrene sulfonate stabilized graphene supports for methanol oxidation. Journal of Materials Chemistry A 1 (10):3489-3494. doi: 10.1039/c2ta00619g
  129. 129.
    Zhang X, Xia G, Huang C, Wang Y (2013) Preparation and characterization of Pt nanoparticles supported on modified graphite nanoplatelet using solution blending method. International Journal of Hydrogen Energy 38 (21):8909-8913. doi:
  130. 130.
    Zhao Y, Zhan L, Tian J, Nie S, Ning Z (2011) Enhanced electrocatalytic oxidation of methanol on Pd/polypyrrole–graphene in alkaline medium. Electrochimica Acta 56 (5):1967-1972. doi:
  131. 131.
    Zong J, Jin Q, Huang C (2013) Effect of wetted graphene on the performance of Pt/PPy-graphene electrocatalyst for methanol electrooxidation in acid medium. Journal of Solid State Electrochemistry 17 (5):1339-1348. doi: 10.1007/s10008-012-1993-z
  132. 132.
    Yue R, Zhang Q, Wang C, Du Y, Yang P, Xu J (2013) Graphene–poly(5-aminoindole) composite film as Pt catalyst support for methanol electrooxidation in alkaline medium. Electrochimica Acta 107 (0):292-300. doi:
  133. 133.
    Jiang F, Yao Z, Yue R, Du Y, Xu J, Yang P, Wang C (2012) Electrochemical fabrication of long-term stable Pt-loaded PEDOT/graphene composites for ethanol electrooxidation. International Journal of Hydrogen Energy 37 (19):14085-14093. doi:
  134. 134.
    Shi Q, Mu S (2012) Preparation of Pt/poly(pyrogallol)/graphene electrode and its electrocatalytic activity for methanol oxidation. Journal of Power Sources 203 (0):48-56. doi:
  135. 135.
    Guo S, Dong S, Wang E (2009) Three-Dimensional Pt-on-Pd Bimetallic Nanodendrites Supported on Graphene Nanosheet: Facile Synthesis and Used as an Advanced Nanoelectrocatalyst for Methanol Oxidation. ACS Nano 4 (1):547-555. doi: 10.1021/nn9014483
  136. 136.
    Zhang Q, Ren Q, Miao Y, Yuan J, Wang K, Li F, Han D, Niu L (2012) One-step synthesis of graphene/polyallylamine–Au nanocomposites and their electrocatalysis toward oxygen reduction. Talanta 89 (0):391-395. doi:
  137. 137.
    Yang J-M, Wang S-A, Sun C-L, Ger M-D (2014) Synthesis of size-selected Pt nanoparticles supported on sulfonated graphene with polyvinyl alcohol for methanol oxidation in alkaline solutions. Journal of Power Sources 254 (0):298-305. doi:
  138. 138.
    Fujigaya T, Hirata S, Nakashima N (2014) A highly durable fuel cell electrocatalyst based on polybenzimidazole-coated stacked graphene. Journal of Materials Chemistry A 2 (11):3888-3893. doi: 10.1039/c3ta14469k
  139. 139.
    Hosseini H, Mahyari M, Bagheri A, Shaabani A (2014) Pd and PdCo alloy nanoparticles supported on polypropylenimine dendrimer-grafted graphene: A highly efficient anodic catalyst for direct formic acid fuel cells. Journal of Power Sources 247 (0):70-77. doi:
  140. 140.
    Zhang W, Chen M, Gong X, Diao G (2013) Universal water-soluble cyclodextrin polymer–carbon nanomaterials with supramolecular recognition. Carbon 61 (0):154-163. doi:
  141. 141.
    Ming H, Li X, Wei Y, Bu L, Kang Z, Zheng J (2013) Facile synthesis of ionic-liquid functionalized graphite oxide nanosheets for a highly efficient fuel cell. RSC Advances 3 (11):3655-3660. doi: 10.1039/c3ra23343j

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Jinghan Zhu
    • 1
  • Fei Liu
    • 1
  • Nasir Mahmood
    • 1
  • Yanglong Hou
    • 1
    Email author
  1. 1.Department of Materials Science and EngineeringCollege of Engineering Peking UniversityBeijingChina

Personalised recommendations