Multi Functional and Smart Graphene Filled Polymers as Piezoelectrics and Actuators

  • Kishor Kumar Sadasivuni
  • Abdullahil Kafy
  • Lingdong Zhai
  • Hyun-U Ko
  • Seong Cheol Mun
  • Jaehwan KimEmail author
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)


Graphite and its derivative materials are widely used in fabricating energy harvesters and are known as materials of this generation. The excellent applications of these materials in technology come from their superior electronic properties. Piezoelectric , Actuator and other tactile materials based on graphene have come up with substantially improved properties. The present chapter deals with these aspects of graphene filled polymer nanocomposites where a thorough investigation of the design and properties of them is carried out. Effect of homogeneous distribution of graphene within the matrix, interfacial interaction and functionalization of fillers are discussed to bring dynamic control to nanoscale actuators and piezoelectrics. In addition to explaining the fundamental requirements to make the best piezoelectric and actuator materials, the existing confronts to guide future progress is also undertaken in this study.


Graphene Electronics Elastomers Piezoelectric Actuator 


  1. 1.
    Novoselov K S, Geim A K,Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Electric Field Effect in Atomically Thin Carbon Films. Science. 2004; 306: 666–669.Google Scholar
  2. 2.
    Rafiee M, Yang J, Kitipornchai S. Thermal bifurcation buckling of carbon nanotube reinforced composite beams. Computers & Mathematics with Applications. 2013; 66: 1147–1160.Google Scholar
  3. 3.
    Balamurugan V, Narayanan S. A piezoelectric higher-order plate element for the analysis of multilayer smart composite laminates. Smart Materials and Structures. 20007; 16: 2026–2039.Google Scholar
  4. 4.
    Narayanan S, Balamurugan V. Finite element modeling of piezolaminated smart structures for active vibration control with distributed sensors and actuators. Journal of Soundand Vibration. 2003; 262: 529– 562.Google Scholar
  5. 5.
    Narayanan S, Balamurgan V. Active control of FGM plates using distributed piezoelectric sensors and actuators. ICTAM04: Proc. 21st Int. Congr. of Theoretical and Applied Mechanics (Warszawa, Poland, Aug. 2004) CDROM.Google Scholar
  6. 6.
    Morten B, Decicco G, Prudenziati M. Resonant Pressure Sensor Based on Piezoelectric Properties of Ferroelectric Thick-Films. Sensors and Actuators A: Physical. 1992; 31: 153–158.Google Scholar
  7. 7.
    Jaffe H, Berlincourt D A. Piezoelectric Transducer Materials. Proc. IEEE. 1965; 53: 1372–1386.Google Scholar
  8. 8.
    Wang Z L, Song J H. Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. Science. 2006; 312: 242–246.Google Scholar
  9. 9.
    Anton S R, Sodano H A. A review of power harvesting using piezoelectric materials (2003–2006). Smart Materials and Structures. 2007; 16: R1.Google Scholar
  10. 10.
    Williams C B, Yates R B. Analysis of a micro-electric generator for microsystems. Sensors Actuators. 1996; 52: 8 – 11.Google Scholar
  11. 11.
    Anton S R and Sodano H A 2007 A review of power harvesting using piezoelectric materials (2003–2006) Smart Mater. Struct. 16 R1.Google Scholar
  12. 12.
    Zhu Y, Zu J, Su W. Broadband energy harvesting through a piezoelectric beam subjected to dynamic compressive loading. Smart Materials and Structures. 2013; 22: 045007.Google Scholar
  13. 13.
    Ahir S V, Squires A M, Tajbakhsh A R, Terentjev E M. Infrared actuation in aligned polymer-nanotube composites Physical Review B. 2006; 73: 085420.Google Scholar
  14. 14.
    Bao Z,Miao F, Chen Z, Zhang H, Jang W Y, Dames C, Lau C N. Controlled Ripple Texturing of Suspended Graphene and Ultrathin Graphite Membranes. Nature Nanotechnology. 2009; 4: 562–566.Google Scholar
  15. 15.
    Lee M H, Nicholls H R. Tactile sensing for mechatronics—a state of the art survey. Mechatronics. 1999; 9: 1-31.Google Scholar
  16. 16.
    Voges U. Laparoscopic technique—which developments are possible? Urologe A. 1996; 3: 208 -214 (in German).Google Scholar
  17. 17.
    Eltaib M E H, Hewit J R. Tactile sensing technology for minimal access surgery—a review. Mechatronics. 2003; 13: 1163-1177.Google Scholar
  18. 18.
    Gray B L, Fearing R S, A surface micromachined microtactile sensor array. Proceedings of the IEEE International Conference on Robotics and Automation. 1996; vol. 1: Minneapolis, MN, USA, April 22–28, 1996, pp. 1–6.Google Scholar
  19. 19.
    Takashima K, Yoshinaka K, Okazaki T, Ikeuchi K. An endoscopic tactile sensor for low invasive surgery. Sensors and Actuator A. 2005; 119: 372 – 383.Google Scholar
  20. 20.
    Lu S, Panchapakesan B. Photomechanical responses of carbon nanotube/polymer actuators. Nanotechnology 2007;18: 305502.Google Scholar
  21. 21.
    Lendlein A, Jiang H,Junger O, Langer R.Light-induced shape-memory polymers.Nature2005;434: 879-882.Google Scholar
  22. 22.
    Jiang H,Kelch S,Lendlein A.Polymers Move in Response to Light.Adv. Mater.2006;18: 1471-1475.Google Scholar
  23. 23.
    Loomis J, Fan X, Khosravi F, Xu P, Fletcher M, Cohn R W, Panchapakesan B. Graphene/elastomer composite-based photo-thermal nanopositioners. Scientific Reports 2013; 3. 1900; DOI:  10.1038/srep01900.
  24. 24.
    Cheng H, Liu J, Zhao Y, Hu C, Zhang Z, Chen N, Jiang L, Qu L,Graphene Fibers with Predetermined Deformation as Moisture- Triggered Actuators and Robots Angew. Chem. Int. Ed.2013; 52: 10482 –10486.Google Scholar
  25. 25.
    Hwang T, Kwon H Y, Oh J S, Hong J P, Hong S C, Lee Y, Choi H R, Kim K J, Bhuiya M H, Nam J D. Transparent actuator made with few layer graphene electrode and dielectric elastomer, for variable focus lens. Applied Physics Letters. 2013; 103: 023106.Google Scholar
  26. 26.
    Liang J, Xu Y, Huang Y, Zhang L, Wang Y, Ma Y, Li F, Guo T, Chen Y. Infrared-Triggered Actuators from Graphene-Based Nanocomposites, The Journal of Physical Chemistry C. 2009; 113: 9921–9927.Google Scholar
  27. 27.
    Bi H, Yin K, Xie X, Zhou Y, Wan S, Banhartb A F, Sun L. Microscopic bimetallic actuator based on a bilayer of graphene and graphene oxide. Nanoscale. 2013; 5: 9123 – 9128.Google Scholar
  28. 28.
    Wang E, Desai M S, Lee S W. Light-Controlled Graphene-Elastin Composite Hydrogel Actuators. Nano Letters. 2013; 13: 2826–2830.Google Scholar
  29. 29.
    Liang J. J, Huang L, Li N, Huang Y, Wu Y. P, Fang S. L, Oh J, Kozlov M, Ma Y. F, Li F. F, Baughman R, Chen Y. S. Electromechanical Actuator with Controllable Motion, Fast Response Rate, and High-Frequency Resonance Based on Graphene and Polydiacetylene. ACS nano, 2012; 6: 4508–4519.Google Scholar
  30. 30.
    Ahir S. V, Huang Y, Terentjev E. M. Polymers with aligned carbon nanotubes: Active composite materials. Polymer 2008; 49: 3841-3854.Google Scholar
  31. 31.
    Levitsky I. A,Kanelos P. T, Woodbury D. S, Euler W. B.Photoactuation from a Carbon Nanotube–Nafion Bilayer Composite.J. Phys. Chem. B2006;110: 9421-9425.Google Scholar
  32. 32.
    Ahir S. V, Terentjev E. M. Fast Relaxation of Carbon Nanotubes in Polymer Composite Actuators Phys. Rev. Lett. 2006; 96: 133902.Google Scholar
  33. 33.
    Ahir S. V,Terentjev E. M.Photomechanical actuation in polymer–nanotube compositesNature Mater.2005;4: 491-495.Google Scholar
  34. 34.
    Yang L, Setyowati K, Li A, Gong S, Chen J. Reversible Infrared Actuation of Carbon Nanotube–Liquid Crystalline Elastomer Nanocomposites. Adv. Mater. 2008; 20: 2271-2275.Google Scholar
  35. 35.
    Koerner H, Price G, Pearce N. A, Alexander M, Vaia R. A. Remotely actuated polymer nanocomposites—stress-recovery of carbon-nanotube-filled thermoplastic elastomers. Nature Mater. 2004; 3: 115-120.Google Scholar
  36. 36.
    Osada Y, Okuzaki H, Hori H. A polymer gel with electrically driven motility. Nature. 1992; 355: 242 - 244.Google Scholar
  37. 37.
    Sidorenko A, Krupenkin T, Taylor A, Fratzl P, Aizenberg J.Reversible switching of hydrogel-actuated nanostructures into complex micopatterns. Science. 2007; 315: 487 - 490.Google Scholar
  38. 38.
    Bunch J S, Zande A M Van Der, Verbridge S S, Frank I W, Tanenbaum D M, Parpia J M, Craighead H G, McEuen P L.Electromechanical Resonators from Graphene Sheets. Science. 2007; 315: 490 - 493.Google Scholar
  39. 39.
    Ikuno T, Honda S I, Yasuda T, Oura K, Katayama M, Lee J G, Mori H. Thermally driven nanomechanical deflection of hybrid nanowires. Applied Physics Letters. 2005; 87: 213104.Google Scholar
  40. 40.
    Craighead H G. Nanoelectromechanical Systems. Science. 2000; 290: 1532–1535.Google Scholar
  41. 41.
    Fennimore A M, Yuzvinsky T D, Han W Q, Fuhrer M S., Cumings J, Zettl A. Rotational Actuators Based on Carbon Nanotubes. Nature. 2003; 424: 408–410.Google Scholar
  42. 42.
    Park S, An J, Suk J W, Ruoff R S. Graphene-Based Actuators. Small. 2010; 6: 210–212.Google Scholar
  43. 43.
    Muralidharan M N, Ansari S. Thermally reduced graphene oxide/thermoplastic polyurethane nanocomposites as photomechanical actuators. Advanced Materials Letters. 2013; 4: 927-932.Google Scholar
  44. 44.
    Gerratt A. P, Bergbreiter S. Incorporating compliant elastomers for jumping locomotion in microrobots. Smart Mater. Struct. 2013; 22: 014010.Google Scholar
  45. 45.
    Brochu P, Stoyanov H, Niu X, Pei Q. All-silicone prestrain-locked interpenetrating polymer network elastomers: free-standing silicone artificial muscles with improved performance and robustness. Smart Mater. Struct. 2013; 22: 055022 DOI: 10.1088/0964-1726/22/5/055022.
  46. 46.
    Novoselov K. S, Geim A. K, Morozov S. V, Jiang D, Zhang Y, Dubonos S. V, Grigorieva I. V, Firsov A. A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004; 306: 666-669.Google Scholar
  47. 47.
    Lotya M, King P. J, Khan U, De S, Coleman J. N. High-Concentration, Surfactant-Stabilized Graphene Dispersions. ACS Nano 2010; 4: 3155-3162.Google Scholar
  48. 48.
    Su C. Y, Lu A. Y, Xu Y, Chen F. R, Khlobystov A. N, L L. J. High-Quality Thin Graphene Films from Fast Electrochemical Exfoliation. ACS Nano 2011; 5: 2332-2339.Google Scholar
  49. 49.
    Tkachev S. V, Buslaeva E. Y, Gubin S. P. Graphene: A novel carbon nanomaterial. Inorganic Materials 2011; 47: 1-10.Google Scholar
  50. 50.
    Forbeaux I,Themlin J. M, Debever J. M.Heteroepitaxial graphite on 6H–SiC(0001): Interface formation through conduction-band electronic structure. Phys. Rev. B 1998; 58: 16396-16406.Google Scholar
  51. 51.
    Cambaz Z. G,Yushin G, Osswald S, Mochalin V, Gogotsi Y. Noncatalytic synthesis of carbon nanotubes, graphene and graphite on SiC. Carbon 2008; 46: 841-849.Google Scholar
  52. 52.
    Kim K. S, Zhao Y, Jang H, Lee S. Y, Kim J. M, Kim K. S, Ahn J. H, Kim P, Choi J. Y, Hong B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009; 457: 706-710.Google Scholar
  53. 53.
    Xuesong L, Cai W. W, An J, Kim S. Y, Nah J, Yang D. X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S. K, Colombl L, Ruoff R. S. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 2009; 324: 1312-1314.Google Scholar
  54. 54.
    Zheng W, Lu X, Wong S.C. Electrical and mechanical properties of expanded graphite-reinforced high-density polyethylene. J. Appl. Polym. Sci. 2004; 91: 2781–2788.Google Scholar
  55. 55.
    Hu H.T, Wang J.C, Wan L, Liu F.M, Zheng H, Chen R, Xu C. H. Preparation and properties of graphene nanosheets – polystyrene nanocomposites via insitu emulsion polymerization. Chem. Phy. Letts.2010; 484: 247–253.Google Scholar
  56. 56.
    Lee W.D, Im S.S. Thermomechanical properties and crystallization behavior of layered double hydroxide/poly(ethylene terephthalate) nanocomposites prepared by in-situ polymerization. J. Polym. Sci. Pt. B Polym. Phys. 2007; 45: 28–40.Google Scholar
  57. 57.
    Hussain F, Hojjati M, Okamoto M, Gorga R.E. Review article: polymer–matrix nanocomposites, processing, manufacturing, and application: an overview. J. Compos. Mater. 2006; 40: 1511–1575.Google Scholar
  58. 58.
    Wanga W.P, Pana C.Y. Preparation and characterization of polystyrene/graphite composite prepared by cationic grafting polymerization. Polymer 2004; 45: 3987–3995.Google Scholar
  59. 59.
    Kalaitzidou K, Fukushima H, Drzal L.T. A new compounding method for exfoliated graphite-polypropylene nanocomposites with enhanced flexural properties and lower percolation threshold. Compos. Sci. Technol. 2007; 67: 2045–2051.Google Scholar
  60. 60.
    Kim S.K, Kim N.H, Lee J.H. Effects of the addition of multiwalled carbon nanotubes on the positive temperature coefficient characteristics of carbon-black-filled high density polyethylene nanocomposites. Scripta. Mater. 2006; 55: 1119–1122.Google Scholar
  61. 61.
    Kim, S.; Do, I.; Drzal, L.T. Thermal stability and dynamic mechanical behavior of exfoliated graphite nanoplatelets-LLDPE nanocomposites. Polym. Compos. 2009, 31, 755–761.Google Scholar
  62. 62.
    Bai S, Xu Q, Gu L, Ma F, Qin Y, Wang Z L, (2012) Single crystalline lead zirconate titanate (PZT) nano/micro-wire based self-powered UV sensor Nano Energy, DOI:  10.1016/j.nanoen.2012.09.001.
  63. 63.
    R. Pelrine, R. Kornbluh, Q. B. Pei and J. Joseph, High-speed electrically actuated elastomers with strain greater than 100 %. Science, 2000; 287: 836–839.Google Scholar
  64. 64.
    Kaneto K, Kaneko M, Min Y, MacDiarmid A. G.“Artificial muscle”: Electromechanical actuators using polyaniline films. Synth. Met. 1995; 71: 2211–2212.Google Scholar
  65. 65.
    Baughman R. H. Conducting polymer artificial muscles Synth. Met., 1996; 78: 339–353.Google Scholar
  66. 66.
    Smela E. Conjugated Polymer Actuators for Biomedical Applications. Adv. Mater., 2003; 15: 481–494.151 Asaka K, Oguro K, Nishimura Y, Mizuhata M, Takenaka H. Bending of Polyelectrolyte Membrane–Platinum Composites by Electric Stimuli I. Response Characteristics to Various Waveforms. Polym. J., 1995; 27: 436–440.Google Scholar
  67. 67.
    Shahinpoor M. Ionic polymer–conductor composites as biomimetic sensors, robotic actuators and artificial muscles—a review. Electrochim. Acta, 2003; 48: 2343–2353.Google Scholar
  68. 68.
    Baughman R. H, Cui C, Zakhidov A. A, Iqbal Z, Barisci J. N, Spinks G. M, Wallace G. G, Mazzoldi A, De Rossi D, Rinzler A. G, Jaschinski O, Roth S, Kertesz M. Carbon Nanotube Actuators. Science, 1999; 284: 1340–1344.Google Scholar
  69. 69.
    Alamusi, Xue J. M, Wu L. K, Hu N, Qiu J. H, Chang C, Atobe S, Fukunaga H, Watanabe T, Liu Y. L, Ning H. M, Li J. H, Li Y, Zhao Y. H. Evaluation of piezoelectric property of reduced graphene oxide (rGO)–poly(vinylidene fluoride) nanocomposites. Nanoscale, 2012; 4: 7250-7255.Google Scholar
  70. 70.
    Ong M. T, Reed E. J, Engineered Piezoelectricity in Graphene, ACS Nano, 2012: 1387–1394.Google Scholar
  71. 71.
    Osterlund L, Chakarov D. V, Kasemo B. Potassium Adsorption on Graphite(0001). Surf. Sci. 1999; 420: 174–189.Google Scholar
  72. 72.
    Virojanadara C,Watcharinyanon S,Zakharov A. A, Johansson L. I. Epitaxial Graphene on 6H-SiC and LiIntercalation. Phys. Rev. B 2010; 82: 205402.Google Scholar
  73. 73.
    Hussain M, Abbasi M. A, Ibupoto Z. H, Nur O, Willander M. The improved piezoelectric properties of ZnO nanorods with oxygen plasma treatment on the single layer graphene coated polymer substrate, Phys. Status Solidi A, 2014; 211: 455–459.Google Scholar
  74. 74.
    Yang R, Qin Y, Li C, Zhu G, Wang Z. L. Complex Crystal Structures Formed by the Self-Assembly of Ditethered Nanospheres. NanoLett. 2009; 9: 1201-1205.Google Scholar
  75. 75.
    Lee J. H, Lee K. Y, Gupta M. K, Kim T. Y, Lee D. Y, Oh J, Ryu C. K, Yoo W. J, Kang C. Y, Yoon S. J, Yoo J. B, Kim S. W. Highly Stretchable Piezoelectric-Pyroelectric Hybrid Nanogenerator. Adv. Mater. 2014; 26: 765–769.Google Scholar
  76. 76.
    Balandin A A. Thermal properties of graphene and nanostructured carbon materials. Nature Materials. 2011; 10, 569–581.Google Scholar
  77. 77.
    Wu H, Drzal L T. Graphene nanoplatelet paper as a light-weight composite with excellent electrical and thermal conductivity and good gas barrier properties. Carbon. 2012; 50: 1135–1145.Google Scholar
  78. 78.
    Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N. Superior thermal conductivity of single-layer graphene. Nano Letters. 2008; 8: 902–907.Google Scholar
  79. 79.
    Choi S U S, Zhang Z G, Yu W, Lockwood F E, Grulke E A. Anomalous thermal conductivity enhancement in nanotube suspensions. Applied Physics Letters. 2001; 79:2252–2254.Google Scholar
  80. 80.
    Loomis J, King B, Panchapakesan B. Layer dependent mechanical responses of graphene composites to near-infrared light. Applied Physics Letter. 2012; 100: 073108.Google Scholar
  81. 81.
    Pelrine R, Kornbluh R, Pei Q, Joseph J. High-Speed Electrically Actuated Elastomers with Strain Greater Than 100 %.Science.2000;287: 836 – 839.Google Scholar
  82. 82.
    Nam J D, Hwang S D, Choi H R, Lee J H, Kim K J, Heo S. Electrostrictive polymer nanocomposites exhibiting tunable electrical properties. Smart Materials and Structures. 2005; 14: 87.Google Scholar
  83. 83.
    Son S I, Pugal D, Hwang T, Choi H R, Koo J C, Lee Y, Kim K, Nam J D. Electromechanically driven variable-focus lens based on transparent dielectric elastomer. Applied Optics. 2012; 51: 2987 – 2996.Google Scholar
  84. 84.
    Nair R R, Wu H A, Jayaram P N, Grigorieva I V, Geim A K. Unimpeded Permeation of Water through Helium-Leak–Tight Graphene-Based Membranes. Science. 2012; 335: 442 – 444.Google Scholar
  85. 85.
    Jian Z, Christine M A, Jia D X, Ayyalusamy R, Thomas T, Nicholas A K. Pseudonegative Thermal Expansion and the State of Water in Graphene Oxide Layered Assemblies. ACS Nano.2012; 6: 8357 – 8365.Google Scholar
  86. 86.
    Lee S K, Jang H Y, Jang S, Choi E, Hong B H, Lee J,Park S, Ahn J H. All Graphene-Based Thin Film Transistors on Flexible Plastic Substrates. Nano Letters. 2012; 12: 3472 – 3476.Google Scholar
  87. 87.
    Jeong H Y, Kim J Y, Kim J W, Hwang J O, Kim J E, Lee J Y, Yoon T H, Cho B J, Kim S O, Ruoff R S,Choi S Y. Graphene Oxide Thin Films for Flexible Nonvolatile Memory Applications. Nano Letters. 2010; 10: 4381 – 4386.Google Scholar
  88. 88.
    He Q Y, Sudibya H G, Yin Z Y, Wu S X, Li H, Boey F, Huang W, Chen P, Zhang H. Centimeter-Long and Large-Scale Micropatterns of Reduced Graphene Oxide Films: Fabrication and Sensing Applications. ACS Nano. 2010; 4: 3201 – 3208.Google Scholar
  89. 89.
    Timoshenko S. Analysis of bi-metal thermostats. J. Opt. Soc. Am., 1925; 11: 233-255.Google Scholar
  90. 90.
    Lo C.W, Zhu D, Jiang H. An infrared-light responsive graphene-oxide incorporated poly(N-isopropylacrylamide) hydrogel nanocomposite. Soft Matter. 2011; 7: 5604-5609.Google Scholar
  91. 91.
    Zhu C. H, Lu Y, Peng J, Chen J.F, Yu S.H. Photothermally Sensitive Poly(N-isopropylacrylamide)/Graphene Oxide Nanocomposite Hydrogels as Remote Light-Controlled Liquid Microvalves. Adv. Funct.Mater. 2012; 22: 4017–4022.Google Scholar
  92. 92.
    Lian Y, Liu Y, JiangT, Shu J, Lian H, Cao M. Enhanced Electromechanical Performance of Graphite Oxide-Nafion Nanocomposite Actuator. Journal of Physical Chemistry C. 2010; 114: 9659–9663.Google Scholar
  93. 93.
    Ramasamy M. S, Mahapatra S. S, Yoo H. J, Kim Y. A, Cho J. W. Soluble conducting polymer-functionalized graphene oxide for air-operable actuator, fabrication. J. Mater. Chem. A, 2014; 2:4788-4794.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Kishor Kumar Sadasivuni
    • 1
  • Abdullahil Kafy
    • 1
  • Lingdong Zhai
    • 1
  • Hyun-U Ko
    • 1
  • Seong Cheol Mun
    • 1
  • Jaehwan Kim
    • 1
    Email author
  1. 1.Center for EAPap Actuator, Department of Mechanical EngineeringInha UniversityIncheonSouth Korea

Personalised recommendations