Skip to main content

Electrical Properties of Graphene Polymer Nanocomposites

  • Chapter
  • First Online:
Graphene-Based Polymer Nanocomposites in Electronics

Abstract

Graphene, a monolayer of sp2 hybridized carbon atoms arranged in a two dimensional lattice has attracted electronic industrial interest due to its exceptional electrical properties. One of the most promising applications of this material is in polymer nanocomposites in which the interface of graphene based materials and polymer chains merge to develop the most technologically promising devices. This chapter presents the electrical properties of such graphene based polymer nanocomposites and also discusses the effect of various factors on their electrical conductivity. Graphene enables the insulator to conductor transition at significantly lower loading by providing percolated pathways for electron transfer and making the polymers composite electrically conductive. The effect of processing conditions, dispersion , aggregation, modification and aspect ratio of graphene on the electrical conductivity of the graphene/polymer nanocomposites is conferred.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang X, Yin Z, Wu S, Qi X, He Q, Zhang Q, Yan Q, Boey F, Zhang H (2011) Graphene-Based Materials: Synthesis, Characterization, Properties, and Applications. Small 7: 1876–1902.

    Google Scholar 

  2. Dong L X, Chen Q (2010) Properties, synthesis, and characterization of grapheme. Frontiers of Materials Science in China 4: 45–51.

    Google Scholar 

  3. Du J, Cheng H M (2012) The Fabrication, Properties, and Uses of Graphene/Polymer Composites. Macromolecular Chemistry and Physics 213: 1060–1077.

    Google Scholar 

  4. Cai W W, Piner R D, Stadermann F J, Park S, Shaibat M A, Ishii Y, Yang D X, Velamakanni A, An S J, Stoller M, An J H, Chen D M, Ruoff R S S (2008) Synthesis and solid-state NMR structural characterization of C-labeled graphite oxide. Science 321: 1815–1817.

    Google Scholar 

  5. Li X S, Cai W W, An J H, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324: 1312–1314.

    Google Scholar 

  6. Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A (2004) Electric field effect in atomically thin carbon films. Science 306: 666–669.

    Google Scholar 

  7. Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A (2005) Two-dimensional gas of massless Dirac fermions in grapheme. Nature 438: 197–200.

    Google Scholar 

  8. Zhang Y, Tan Y W, Stormer H L, Kim P (2005) Experimental observation of the quantum Hall effect and Berry’s phase in grapheme. Nature 438: 201–204.

    Google Scholar 

  9. Geim A K, Novoselov K S (2007) The rise of graphene. Nature Mater 6: 183–191.

    Google Scholar 

  10. Dreyer D R, Ruoff R S, Bielawski C W (2010) From conception to realization: an historial account of graphene and some perspectives for its future. Agnewandle Chemie International Edition 49: 9336–9345.

    Google Scholar 

  11. Boehm H P, Setton R, Stumpp E (1986) Nomenclature and terminology of graphite intercalation compounds. Carbon 24: 241–245.

    Google Scholar 

  12. Novoselov K S, Jiang D, Schedin F, Booth T, Khotkevich V V, Morozov S V, Geim A K (2005) Two-dimensional atomic crystals. Procedings of the National Academy of Sciences 102: 10451–10453.

    Google Scholar 

  13. Park S, Ruoff R S (2009) Chemical methods for the production of graphenes. Nature Nanotechnology 4: 217–224.

    Google Scholar 

  14. Fujita D, Yoshihara K(1994) Surface precipitation process of epitaxially grown graphite (0001) layers on carbon‐doped nickel(III) surface. J Vac Sci Technol A 1994, 12, 2134–2139.

    Google Scholar 

  15. Gao J H, Fujita D, Xu M S (2010) Unique synthesis of few-layer graphene films on carbon-doped Pt83Rh17 surfaces. ACS Nano 4: 1026–1032.

    Google Scholar 

  16. Xu M S, Fujita D, Chen H Z, Hanagata N(2011) Formation of monolayer and few-layer hexagonal boron nitride nanosheets via surface segregation. Nanoscale 3: 2854–2858.

    Google Scholar 

  17. Fujita D (2011) Nanoscale synthesis and characterization of graphene-based objects. Science and Technology of Advanced Materials 12: 044611 (1–10).

    Google Scholar 

  18. Xu M S, Fujita D, Sagisaka K, Watanable E, Hanagata N (2011) Production of extended single-layer graphene. ACS Nano 5: 1522–1528.

    Google Scholar 

  19. Xu M S, Endres R G, Tsukamoto S, Kitamura M, Ishida S, Arakawa Y (2005) Conformation and local environment dependent conductance of DNA molecules. Small 1: 1168–1172.

    Google Scholar 

  20. Xu M S, Tsukamoto S, Ishida S, Kitamura M, Arakawa Y, Endres R G, Shimoda M (2005) Conductance of single thiolated poly(GC)-poly(GC) DNA molecules. Applied Physics Letters 87: 083902 (1–3).

    Google Scholar 

  21. Merino P, Svec M, Pinardi A L, Otero G, Martin-Gago J A (2011) Strain-driven moiré superstructures of epitaxial graphene on transition metal surfaces. ACS Nano 5: 5627–5634.

    Google Scholar 

  22. Zhou S X, Zhu Y, Du H D, Li B H, Kang F Y (2012) Preparation of oriented graphite/polymer composite sheets with high thermal conductivities by tape casting. New Carbon Mater 27: 241–249.

    Google Scholar 

  23. Zhou S, Chiang S, Xu J, Du H, Li B, Xu C, Kang F (2012) Modeling the in-plane thermal conductivity of a graphite/polymer composite sheet with a very high content of natural flake graphite. Carbon 50: 5052–5061.

    Google Scholar 

  24. Zhang W, Xu H, Chen Y, Cheng S, Fan L (2013) Polydiacetylene-polymethylmethacrylate/graphene composites as one-shot, visually observable, and semiquantative electrical current sensing materials. ACS Applied Materials & Interfaces 5: 4603–4606.

    Google Scholar 

  25. Gudarzi M M, Sharif F (2012) Enhancement of dispersion and bonding of graphene-polymer through wet transfer of functionalized graphene oxide. Express Polymer Letters 6: 1017–1031.

    Google Scholar 

  26. Yu H Y, Xu M Q, Yu S H, Zhao G C (2013) A novel non-enzymatic glucose sensor based on CuO - graphene nanocomposites. International Journal of Electrochemical Science 8: 8050–8057.

    Google Scholar 

  27. Paszkiewicz S, Szymczyk A, Spitalsky S, Soccio M, Mosnacek J, Ezquerra T A, Roslaniec Z (2012) Electrical conductivity of poly(ethylene terephthalate)/expanded graphite nanocomposites prepared by in situ polymerization. Journal of Polymer Science Part B: Polymer Physics 50: 1645–1652.

    Google Scholar 

  28. Wei H, Zhu J, Wu S, Wei S, Guo Z (2013) Electrochromic polyaniline/graphite oxide nanocomposites with endured electrochemical energy storage. Polymer 54: 1820–1831.

    Google Scholar 

  29. Chen G L, Shau S M, Juang T Y, Lee R H, Chen C P, Suen S Y, Jeng R J (2011) Single-layered graphene oxide nanosheet/polyaniline hybrids fabricated through direct molecular exfoliation. Langmuir 27: 14563–14569.

    Google Scholar 

  30. Ansari S, Emmanuel P G (2009) Functionalized graphene sheet-poly(vinylidene fluoride) conductive nanocomposites. Journal of Polymer Science Part B: Polymer Physics 47: 888–897.

    Google Scholar 

  31. Chandra S, Bag S, Das P, Bhattacharya D, Pramanik P (2012) Fabrication of magnetically separable palladium–graphene nanocomposite with unique catalytic property of hydrogenation. Chemical Physics Letters 519: 59–63.

    Google Scholar 

  32. Matusinovic Z, Rogosic M, Sipusic J (2009) Synthesis and characterization of poly(styrene-co-methyl methacrylate)/layered double hydroxide nanocomposites via in situ polymerization. Polymer Degradation and Stability 94: 95–101.

    Google Scholar 

  33. Aldosari M, Othman A, Alsharaeh E (2013) Synthesis and characterization of the in situ bulk polymerization of PMMA containing graphene sheets using microwave irradiation. Molecules 18: 3152–3167 (3).

    Google Scholar 

  34. Nuvoli D, Alzari V, Sanna R, Scognamillo S, Piccinini M, Peponi L, Kenny J M, Mariani A (2012) The production of concentrated dispersions of few-layer graphene by the direct exfoliation of graphite in organosilanes. Nanoscale Research Letters 7: 674 (1–7).

    Google Scholar 

  35. Wu W, Liu Z, Jauregui L A, Yu Q, Pillai R, Cao H, Bao J, Chen Y P, Pei S S (2010) Wafer-scale synthesis of graphene by chemical vapor deposition and its application in gas sensing. Sensors and Actuators B 150: 296–300.

    Google Scholar 

  36. Wang Y, Yang R, Shi Z, Zhang L, Shi D, Wang E, Zhang G (2011) Super-elastic graphene ripples for flexible strain sensors. ACS Nano 5: 3645–3650.

    Google Scholar 

  37. Sojoudi H, Graham S (2013) Transfer-free selective area synthesis of graphene using solid-state self-segregation of carbon in Cu/Ni bilayers. ECS Journal of Solid State Science and Technology 2: M17–M21.

    Google Scholar 

  38. Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457: 706–710.

    Google Scholar 

  39. Reina A, Jia X T, Ho J, Nezich D, Son H B, Bulovic V, Dresselhaus M S, Kong J (2009) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Letters 9: 30–35.

    Google Scholar 

  40. Berciaud S, Ryu S, Brus L E, Heinz T F (2009) Probing the intrinsic properties of exfoliated graphene: Raman spectroscopy of free-standing monolayers. Nano Letters 9: 346–352.

    Google Scholar 

  41. Cao H, Yu Q, Jauregui L A, Tian J, Wu W, Liu Z, Jalilian R, Benjamin D K, Jiang Z, Bao J, Pei S S, Chen Y P (2010) Electronic transport in chemical vapor deposited graphene synthesized on Cu: quantum Hall effect and weak localization. Applied Physics Letters 96: 122106 (1–3).

    Google Scholar 

  42. Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F S, Piscanec F S, Jiang D, Novoselov K S, Roth S, Geim A K (2006) Raman spectrum of graphene and graphene layers. Physical Review Letters 97: 187401 (1–4).

    Google Scholar 

  43. Peng Xu, James Loomis, and Balaji Panchapakesana. load transfer and mechanical properties of chemically derived single layer graphene reinforcements in polymer composites. Nanotechnology. 2012 December 21; 23(50): 505713

    Google Scholar 

  44. Mohiuddin T M G, Lombardo A, Nair R R, Bonetti A, Savini G, Jalil R, Bonini N, Basko D M, Galiotis C, Marzari N, Novoselov K S, Geim A K, Ferrari A C (2009) Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation. Physical Review B 79: 205433.

    Google Scholar 

  45. Galpaya D, Wang M, Liu M, Motta N, Waclawik E, Yan C (2012) Recent advances in fabrication and characterization of graphene-polymer nanocomposites. Graphene 1: 30–49

    Google Scholar 

  46. Kuilla T, Bhadrab S, Yao D, Kim N H, Bose S, Lee J H (2010) Recent advances in graphene based polymer composites. Progress in Polymer Science 35: 1350–1375

    Google Scholar 

  47. Xie S H, Liu Y Y, Li J Y (2008) Comparison of the effective conductivity between composites reinforced by graphene nanosheets and carbon nanotubes. Applied Physics Letters 92 : 243121 (1–3).

    Google Scholar 

  48. Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T, Ruoff R S (2006) Graphene-based composite materials. Nature 442: 282–286.

    Google Scholar 

  49. Alamusi N H, Hisao F, Satoshi A, Yaolu L, Jinhua L (2011) Piezoresistive strain sensors made from carbon nanotubes based polymer nanocomposites. Sensor 11: 10691–10723.

    Google Scholar 

  50. Liang J J, Wang Y, Huang Y, Ma Y, Liu Z, Cai J, Zhang C, Gao H, Chen Y (2009) Electromagnetic interference shielding of graphene/epoxy composites. Carbon 47: 922–925.

    Google Scholar 

  51. Pang H, Chen T, Zhang G, Zeng B, Li Z M (2010) An electrically conducting polymer/graphene composite with a very low percolation threshold. Materials Letters 64: 2226–2229.

    Google Scholar 

  52. Zhang H B, Zheng W G, Yan Q, Yang Y, Wang J W, Lu Z H, Ji G Y, Yu Z Z (2010) Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer 51: 1191–1196.

    Google Scholar 

  53. Kim H, Y. Miura Y, Macosko C W (2010) Graphene/Poly- urethane Nanocomposites for Improved Gas Barrier and Electrical Conductivity. Chemistry of Materials 22: 3441–3450.

    Google Scholar 

  54. Maiti S, Shrivastava N K, Suin S, Khatua B B (2013) Polystyrene/MWCNT/graphite nanoplate nanocomposites: efficient electromagnetic interference shielding material through graphite nanoplate–MWCNT–graphite nanoplate networking. ACS Applied Materials & Interfaces 5: 4712–4724.

    Google Scholar 

  55. Zhang H B, Zheng W G, Yan Q, Yang Y, Wang J W, Lu Z H, Ji G Y, Yu Z Z (2010) Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer 51: 1191–1196.

    Google Scholar 

  56. Liang Y, Gholamerza P, Seyed A Monemian, Ica M Zioczowe (2014) Epoxy composites with carbon nanotubes and graphene nanoplatetletes-dispersion and synergy effects. Carbon 78: 268–278.

    Google Scholar 

  57. He L, Tjong S C (2013) Low percolation threshold of graphene/polymer composites prepared by solvothermal reduction of graphene oxide in the polymer solution. Nanoscale Research Letters 8: 132 (1–7).

    Google Scholar 

  58. Nan C W, Shen Y, Ma J (2010) Physical properties of composites near percolation. Annual Review of Materials Research 40: 131–151.

    Google Scholar 

  59. Cui L L, Lu X F, Chao D M, Liu H T, Li Y X, Wang C (2011) Graphene-based composite materials with high dielectric permittivity via an in situ reduction method. physica status solidi (a) 208: 459–461.

    Google Scholar 

  60. Hu H, Wang X, Wang J, Wan L, Liu F, Zheng H, Chen R, Xu C (2010) Preparation and properties of graphene nanosheets-polystyrene nanocomposites via in situ emulsion polymerization. Chemical Physics Letters 484 : 247–253.

    Google Scholar 

  61. Lee Y R, Raghu A V, Jeong H M, Kim B K (2009) Properties of waterborne polyurethane/functionalized graphene sheet nanocomposites prepared by an in situ method. Macromolecular Chemistry and Physics 210 : 1247–1254.

    Google Scholar 

  62. Kim H, Macosko C W (2009) Processing–property relationships of polycarbonate/ graphene nanocomposites. Polymer 50:3797– 3809.

    Google Scholar 

  63. Geng Y, Wang S J, Kim J K (2009) Preparation of graphite nanoplatelets and graphene sheets. Journal of Colloid and Interface Science 336 : 592–598.

    Google Scholar 

  64. Wei T, Luo G, Fan Z, Zheng C, Yan J, Yao C, Li W, Zhang C (2009) Preparation of graphene nanosheet/polymer composites using in situ reduction-extractive dispersion. Carbon 47:2296–2299.

    Google Scholar 

  65. Niyogi S, Bekyarova E, Itkis M E, McWilliams J L, Hamon M A, Haddon R C (2006) Solution properties of graphite and graphene. Journal of American Chemical Society 128:7720–7721.

    Google Scholar 

  66. Stankovich S, Piner R D, Nguyen S T, Ruoff R S (2006) Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 44:3342–3347.

    Google Scholar 

  67. Liu N, Luo F, Wu H, Liu Y, Zhang C, Chen J (2008) One step ionic-liquid assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphene. Advanced Functional Materials 18:1518–1525.

    Google Scholar 

  68. Stankovich S, Piner R D, Chen X, Wu N, Nguyen S T, Ruoff R S (2006) Stableaqueous dispersions of graphitic nanoplatelets via the reductionof exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). Journal of Materials Chemistry 16:155–158.

    Google Scholar 

  69. Park S, An J, Piner R D, Jung I, Yang D, Velamakanni A, Nguyen S T, Ruoff R S (2008) Aqueous suspension and characterization of chemically modified grapheme sheets. Chemistry of Materials 20:6592–6594.

    Google Scholar 

  70. Bourlinos A B, Gournis D, Petridis D, Szabo T, Szeri A, Dekany I (2003) Graphite oxide: chemical reduction to graphite and surface modificationwith primary aliphatic amines and amino acids. Chemistry of Materials 19: 6050–6055.

    Google Scholar 

  71. Lomeda J R, Doyle C D, Kosynkin D V, Hwang W F, Tour J M (2008) Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. Journal of American Chemical Society 130:16201–16206.

    Google Scholar 

  72. Li D, Muller M B, Gilje S, Kaner R B, Wallac G G (2007) Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnology 3:101–105.

    Google Scholar 

  73. Worsley K A, Ramesh P, Mandal S K, Niyogi S, Itkis M E, Haddon R C (2007) Soluble graphene derived from graphite fluoride. Chemical Physics Letters 445: 51–56.

    Google Scholar 

  74. Eda G, Chhowalla M (2009) Graphene-based composite thin films for electronics. Nano Letters 9: 814–818.

    Google Scholar 

  75. Bhadra S, Khstagir D, Singh A K, Lee J H (2009) Progress in preparation, processing and applications of polyaniline. Progress in Polymer Science 34:783–810.

    Google Scholar 

  76. Chen Z, Ren W, Gao L, Liu B, Pei S, Cheng H M (2011) Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nature Materials 10: 424–428.

    Google Scholar 

  77. Xu Y, Liu Z, Zhang X,Wang Y, Tian J, Huang Y (2009) A graphene hybrid material covalently functionalized with porphyrin: synthesis and optical limiting property. Advanced Mater 21: 1275–1279.

    Google Scholar 

  78. Berger C, Song Z, Li T, Li X, Ogbazghi AY, Feng R (2004) Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. Journal of Physics and Chemistry B 108:19912–19916.

    Google Scholar 

  79. Kim SC, Lee H, Jeong HM (2010) Effect of pyrene treatment on the properties of graphene/epoxy nanocomposites. Macromolecular Research 18(11): 1125–1128.

    Google Scholar 

  80. Zhang H B, Zheng W G, Yan Q, Yang Y, Wang J W, Lu Z H, Ji G Y, Yu Z Z (2010) Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer 51:1191–1196.

    Google Scholar 

  81. Hao R, Qian W, Zhang L, Hou Y (2008) Aqueous dispersions of TCNQ-anion stabilized graphene sheets. Chem Commun 48: 6576–6578.

    Google Scholar 

  82. Xu Y, Bai H, Lu G, Li C, Shi G (2008) Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. Journal of American Chemical Society 130:5856–5857.

    Google Scholar 

  83. Wang T X, Liang G Z, Yuan L, Gu A (2014) Unique hybridized graphene and its high dielectric constant composites with enhanced frequency stability, low dielectric loss and percolation threshold. Carbon 77: 920–932.

    Google Scholar 

  84. Li Y, Samad Y A, Polychronopoulou K, Alhassan S M, Liao K (2014) Highly Electrically Conductive Nanocomposites Based on PolymerInfused Graphene Sponges. Scientific Reports 4:4652 (1–6).

    Google Scholar 

  85. Zhou T N, Qi X D, Fu Q (2013) The preparation of the poly(vinyl alcohol)/graphene nanocomposites with low percolation threshold and high electrical conductivity by using the large-area reduced graphene oxide sheets. Express Polymer Letters 7: 747–755.

    Google Scholar 

  86. Park J U, Nam S W, Lee M S, Lieber C M (2012) Synthesis of monolithic graphene–graphite integrated electronics. Nature Materials 11: 120–125.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Noorunnisa Khanam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Khanam, P.N., Ponnamma, D., AL-Madeed, M.A. (2015). Electrical Properties of Graphene Polymer Nanocomposites. In: Sadasivuni, K., Ponnamma, D., Kim, J., Thomas, S. (eds) Graphene-Based Polymer Nanocomposites in Electronics. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-13875-6_2

Download citation

Publish with us

Policies and ethics