Advertisement

Electrical Properties of Graphene Polymer Nanocomposites

  • P. Noorunnisa KhanamEmail author
  • Deepalekshmi Ponnamma
  • M. A. AL-Madeed
Chapter
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)

Abstract

Graphene, a monolayer of sp2 hybridized carbon atoms arranged in a two dimensional lattice has attracted electronic industrial interest due to its exceptional electrical properties. One of the most promising applications of this material is in polymer nanocomposites in which the interface of graphene based materials and polymer chains merge to develop the most technologically promising devices. This chapter presents the electrical properties of such graphene based polymer nanocomposites and also discusses the effect of various factors on their electrical conductivity. Graphene enables the insulator to conductor transition at significantly lower loading by providing percolated pathways for electron transfer and making the polymers composite electrically conductive. The effect of processing conditions, dispersion , aggregation, modification and aspect ratio of graphene on the electrical conductivity of the graphene/polymer nanocomposites is conferred.

Keywords

Conductivity Percolation Filler modification Volume fraction Fabrication 

References

  1. 1.
    Huang X, Yin Z, Wu S, Qi X, He Q, Zhang Q, Yan Q, Boey F, Zhang H (2011) Graphene-Based Materials: Synthesis, Characterization, Properties, and Applications. Small 7: 1876–1902.Google Scholar
  2. 2.
    Dong L X, Chen Q (2010) Properties, synthesis, and characterization of grapheme. Frontiers of Materials Science in China 4: 45–51.Google Scholar
  3. 3.
    Du J, Cheng H M (2012) The Fabrication, Properties, and Uses of Graphene/Polymer Composites. Macromolecular Chemistry and Physics 213: 1060–1077.Google Scholar
  4. 4.
    Cai W W, Piner R D, Stadermann F J, Park S, Shaibat M A, Ishii Y, Yang D X, Velamakanni A, An S J, Stoller M, An J H, Chen D M, Ruoff R S S (2008) Synthesis and solid-state NMR structural characterization of C-labeled graphite oxide. Science 321: 1815–1817.Google Scholar
  5. 5.
    Li X S, Cai W W, An J H, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324: 1312–1314.Google Scholar
  6. 6.
    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A (2004) Electric field effect in atomically thin carbon films. Science 306: 666–669.Google Scholar
  7. 7.
    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A (2005) Two-dimensional gas of massless Dirac fermions in grapheme. Nature 438: 197–200.Google Scholar
  8. 8.
    Zhang Y, Tan Y W, Stormer H L, Kim P (2005) Experimental observation of the quantum Hall effect and Berry’s phase in grapheme. Nature 438: 201–204.Google Scholar
  9. 9.
    Geim A K, Novoselov K S (2007) The rise of graphene. Nature Mater 6: 183–191.Google Scholar
  10. 10.
    Dreyer D R, Ruoff R S, Bielawski C W (2010) From conception to realization: an historial account of graphene and some perspectives for its future. Agnewandle Chemie International Edition 49: 9336–9345.Google Scholar
  11. 11.
    Boehm H P, Setton R, Stumpp E (1986) Nomenclature and terminology of graphite intercalation compounds. Carbon 24: 241–245.Google Scholar
  12. 12.
    Novoselov K S, Jiang D, Schedin F, Booth T, Khotkevich V V, Morozov S V, Geim A K (2005) Two-dimensional atomic crystals. Procedings of the National Academy of Sciences 102: 10451–10453.Google Scholar
  13. 13.
    Park S, Ruoff R S (2009) Chemical methods for the production of graphenes. Nature Nanotechnology 4: 217–224.Google Scholar
  14. 14.
    Fujita D, Yoshihara K(1994) Surface precipitation process of epitaxially grown graphite (0001) layers on carbon‐doped nickel(III) surface. J Vac Sci Technol A 1994, 12, 2134–2139.Google Scholar
  15. 15.
    Gao J H, Fujita D, Xu M S (2010) Unique synthesis of few-layer graphene films on carbon-doped Pt83Rh17 surfaces. ACS Nano 4: 1026–1032.Google Scholar
  16. 16.
    Xu M S, Fujita D, Chen H Z, Hanagata N(2011) Formation of monolayer and few-layer hexagonal boron nitride nanosheets via surface segregation. Nanoscale 3: 2854–2858.Google Scholar
  17. 17.
    Fujita D (2011) Nanoscale synthesis and characterization of graphene-based objects. Science and Technology of Advanced Materials 12: 044611 (1–10).Google Scholar
  18. 18.
    Xu M S, Fujita D, Sagisaka K, Watanable E, Hanagata N (2011) Production of extended single-layer graphene. ACS Nano 5: 1522–1528.Google Scholar
  19. 19.
    Xu M S, Endres R G, Tsukamoto S, Kitamura M, Ishida S, Arakawa Y (2005) Conformation and local environment dependent conductance of DNA molecules. Small 1: 1168–1172.Google Scholar
  20. 20.
    Xu M S, Tsukamoto S, Ishida S, Kitamura M, Arakawa Y, Endres R G, Shimoda M (2005) Conductance of single thiolated poly(GC)-poly(GC) DNA molecules. Applied Physics Letters 87: 083902 (1–3).Google Scholar
  21. 21.
    Merino P, Svec M, Pinardi A L, Otero G, Martin-Gago J A (2011) Strain-driven moiré superstructures of epitaxial graphene on transition metal surfaces. ACS Nano 5: 5627–5634.Google Scholar
  22. 22.
    Zhou S X, Zhu Y, Du H D, Li B H, Kang F Y (2012) Preparation of oriented graphite/polymer composite sheets with high thermal conductivities by tape casting. New Carbon Mater 27: 241–249.Google Scholar
  23. 23.
    Zhou S, Chiang S, Xu J, Du H, Li B, Xu C, Kang F (2012) Modeling the in-plane thermal conductivity of a graphite/polymer composite sheet with a very high content of natural flake graphite. Carbon 50: 5052–5061.Google Scholar
  24. 24.
    Zhang W, Xu H, Chen Y, Cheng S, Fan L (2013) Polydiacetylene-polymethylmethacrylate/graphene composites as one-shot, visually observable, and semiquantative electrical current sensing materials. ACS Applied Materials & Interfaces 5: 4603–4606.Google Scholar
  25. 25.
    Gudarzi M M, Sharif F (2012) Enhancement of dispersion and bonding of graphene-polymer through wet transfer of functionalized graphene oxide. Express Polymer Letters 6: 1017–1031.Google Scholar
  26. 26.
    Yu H Y, Xu M Q, Yu S H, Zhao G C (2013) A novel non-enzymatic glucose sensor based on CuO - graphene nanocomposites. International Journal of Electrochemical Science 8: 8050–8057.Google Scholar
  27. 27.
    Paszkiewicz S, Szymczyk A, Spitalsky S, Soccio M, Mosnacek J, Ezquerra T A, Roslaniec Z (2012) Electrical conductivity of poly(ethylene terephthalate)/expanded graphite nanocomposites prepared by in situ polymerization. Journal of Polymer Science Part B: Polymer Physics 50: 1645–1652.Google Scholar
  28. 28.
    Wei H, Zhu J, Wu S, Wei S, Guo Z (2013) Electrochromic polyaniline/graphite oxide nanocomposites with endured electrochemical energy storage. Polymer 54: 1820–1831.Google Scholar
  29. 29.
    Chen G L, Shau S M, Juang T Y, Lee R H, Chen C P, Suen S Y, Jeng R J (2011) Single-layered graphene oxide nanosheet/polyaniline hybrids fabricated through direct molecular exfoliation. Langmuir 27: 14563–14569.Google Scholar
  30. 30.
    Ansari S, Emmanuel P G (2009) Functionalized graphene sheet-poly(vinylidene fluoride) conductive nanocomposites. Journal of Polymer Science Part B: Polymer Physics 47: 888–897.Google Scholar
  31. 31.
    Chandra S, Bag S, Das P, Bhattacharya D, Pramanik P (2012) Fabrication of magnetically separable palladium–graphene nanocomposite with unique catalytic property of hydrogenation. Chemical Physics Letters 519: 59–63.Google Scholar
  32. 32.
    Matusinovic Z, Rogosic M, Sipusic J (2009) Synthesis and characterization of poly(styrene-co-methyl methacrylate)/layered double hydroxide nanocomposites via in situ polymerization. Polymer Degradation and Stability 94: 95–101.Google Scholar
  33. 33.
    Aldosari M, Othman A, Alsharaeh E (2013) Synthesis and characterization of the in situ bulk polymerization of PMMA containing graphene sheets using microwave irradiation. Molecules 18: 3152–3167 (3).Google Scholar
  34. 34.
    Nuvoli D, Alzari V, Sanna R, Scognamillo S, Piccinini M, Peponi L, Kenny J M, Mariani A (2012) The production of concentrated dispersions of few-layer graphene by the direct exfoliation of graphite in organosilanes. Nanoscale Research Letters 7: 674 (1–7).Google Scholar
  35. 35.
    Wu W, Liu Z, Jauregui L A, Yu Q, Pillai R, Cao H, Bao J, Chen Y P, Pei S S (2010) Wafer-scale synthesis of graphene by chemical vapor deposition and its application in gas sensing. Sensors and Actuators B 150: 296–300.Google Scholar
  36. 36.
    Wang Y, Yang R, Shi Z, Zhang L, Shi D, Wang E, Zhang G (2011) Super-elastic graphene ripples for flexible strain sensors. ACS Nano 5: 3645–3650.Google Scholar
  37. 37.
    Sojoudi H, Graham S (2013) Transfer-free selective area synthesis of graphene using solid-state self-segregation of carbon in Cu/Ni bilayers. ECS Journal of Solid State Science and Technology 2: M17–M21.Google Scholar
  38. 38.
    Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457: 706–710.Google Scholar
  39. 39.
    Reina A, Jia X T, Ho J, Nezich D, Son H B, Bulovic V, Dresselhaus M S, Kong J (2009) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Letters 9: 30–35.Google Scholar
  40. 40.
    Berciaud S, Ryu S, Brus L E, Heinz T F (2009) Probing the intrinsic properties of exfoliated graphene: Raman spectroscopy of free-standing monolayers. Nano Letters 9: 346–352.Google Scholar
  41. 41.
    Cao H, Yu Q, Jauregui L A, Tian J, Wu W, Liu Z, Jalilian R, Benjamin D K, Jiang Z, Bao J, Pei S S, Chen Y P (2010) Electronic transport in chemical vapor deposited graphene synthesized on Cu: quantum Hall effect and weak localization. Applied Physics Letters 96: 122106 (1–3).Google Scholar
  42. 42.
    Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F S, Piscanec F S, Jiang D, Novoselov K S, Roth S, Geim A K (2006) Raman spectrum of graphene and graphene layers. Physical Review Letters 97: 187401 (1–4).Google Scholar
  43. 43.
    Peng Xu, James Loomis, and Balaji Panchapakesana. load transfer and mechanical properties of chemically derived single layer graphene reinforcements in polymer composites. Nanotechnology. 2012 December 21; 23(50): 505713Google Scholar
  44. 44.
    Mohiuddin T M G, Lombardo A, Nair R R, Bonetti A, Savini G, Jalil R, Bonini N, Basko D M, Galiotis C, Marzari N, Novoselov K S, Geim A K, Ferrari A C (2009) Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation. Physical Review B 79: 205433.Google Scholar
  45. 45.
    Galpaya D, Wang M, Liu M, Motta N, Waclawik E, Yan C (2012) Recent advances in fabrication and characterization of graphene-polymer nanocomposites. Graphene 1: 30–49Google Scholar
  46. 46.
    Kuilla T, Bhadrab S, Yao D, Kim N H, Bose S, Lee J H (2010) Recent advances in graphene based polymer composites. Progress in Polymer Science 35: 1350–1375Google Scholar
  47. 47.
    Xie S H, Liu Y Y, Li J Y (2008) Comparison of the effective conductivity between composites reinforced by graphene nanosheets and carbon nanotubes. Applied Physics Letters 92 : 243121 (1–3).Google Scholar
  48. 48.
    Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T, Ruoff R S (2006) Graphene-based composite materials. Nature 442: 282–286.Google Scholar
  49. 49.
    Alamusi N H, Hisao F, Satoshi A, Yaolu L, Jinhua L (2011) Piezoresistive strain sensors made from carbon nanotubes based polymer nanocomposites. Sensor 11: 10691–10723.Google Scholar
  50. 50.
    Liang J J, Wang Y, Huang Y, Ma Y, Liu Z, Cai J, Zhang C, Gao H, Chen Y (2009) Electromagnetic interference shielding of graphene/epoxy composites. Carbon 47: 922–925.Google Scholar
  51. 51.
    Pang H, Chen T, Zhang G, Zeng B, Li Z M (2010) An electrically conducting polymer/graphene composite with a very low percolation threshold. Materials Letters 64: 2226–2229.Google Scholar
  52. 52.
    Zhang H B, Zheng W G, Yan Q, Yang Y, Wang J W, Lu Z H, Ji G Y, Yu Z Z (2010) Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer 51: 1191–1196.Google Scholar
  53. 53.
    Kim H, Y. Miura Y, Macosko C W (2010) Graphene/Poly- urethane Nanocomposites for Improved Gas Barrier and Electrical Conductivity. Chemistry of Materials 22: 3441–3450.Google Scholar
  54. 54.
    Maiti S, Shrivastava N K, Suin S, Khatua B B (2013) Polystyrene/MWCNT/graphite nanoplate nanocomposites: efficient electromagnetic interference shielding material through graphite nanoplate–MWCNT–graphite nanoplate networking. ACS Applied Materials & Interfaces 5: 4712–4724.Google Scholar
  55. 55.
    Zhang H B, Zheng W G, Yan Q, Yang Y, Wang J W, Lu Z H, Ji G Y, Yu Z Z (2010) Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer 51: 1191–1196.Google Scholar
  56. 56.
    Liang Y, Gholamerza P, Seyed A Monemian, Ica M Zioczowe (2014) Epoxy composites with carbon nanotubes and graphene nanoplatetletes-dispersion and synergy effects. Carbon 78: 268–278.Google Scholar
  57. 57.
    He L, Tjong S C (2013) Low percolation threshold of graphene/polymer composites prepared by solvothermal reduction of graphene oxide in the polymer solution. Nanoscale Research Letters 8: 132 (1–7).Google Scholar
  58. 58.
    Nan C W, Shen Y, Ma J (2010) Physical properties of composites near percolation. Annual Review of Materials Research 40: 131–151.Google Scholar
  59. 59.
    Cui L L, Lu X F, Chao D M, Liu H T, Li Y X, Wang C (2011) Graphene-based composite materials with high dielectric permittivity via an in situ reduction method. physica status solidi (a) 208: 459–461.Google Scholar
  60. 60.
    Hu H, Wang X, Wang J, Wan L, Liu F, Zheng H, Chen R, Xu C (2010) Preparation and properties of graphene nanosheets-polystyrene nanocomposites via in situ emulsion polymerization. Chemical Physics Letters 484 : 247–253.Google Scholar
  61. 61.
    Lee Y R, Raghu A V, Jeong H M, Kim B K (2009) Properties of waterborne polyurethane/functionalized graphene sheet nanocomposites prepared by an in situ method. Macromolecular Chemistry and Physics 210 : 1247–1254.Google Scholar
  62. 62.
    Kim H, Macosko C W (2009) Processing–property relationships of polycarbonate/ graphene nanocomposites. Polymer 50:3797– 3809.Google Scholar
  63. 63.
    Geng Y, Wang S J, Kim J K (2009) Preparation of graphite nanoplatelets and graphene sheets. Journal of Colloid and Interface Science 336 : 592–598.Google Scholar
  64. 64.
    Wei T, Luo G, Fan Z, Zheng C, Yan J, Yao C, Li W, Zhang C (2009) Preparation of graphene nanosheet/polymer composites using in situ reduction-extractive dispersion. Carbon 47:2296–2299.Google Scholar
  65. 65.
    Niyogi S, Bekyarova E, Itkis M E, McWilliams J L, Hamon M A, Haddon R C (2006) Solution properties of graphite and graphene. Journal of American Chemical Society 128:7720–7721.Google Scholar
  66. 66.
    Stankovich S, Piner R D, Nguyen S T, Ruoff R S (2006) Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 44:3342–3347.Google Scholar
  67. 67.
    Liu N, Luo F, Wu H, Liu Y, Zhang C, Chen J (2008) One step ionic-liquid assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphene. Advanced Functional Materials 18:1518–1525.Google Scholar
  68. 68.
    Stankovich S, Piner R D, Chen X, Wu N, Nguyen S T, Ruoff R S (2006) Stableaqueous dispersions of graphitic nanoplatelets via the reductionof exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). Journal of Materials Chemistry 16:155–158.Google Scholar
  69. 69.
    Park S, An J, Piner R D, Jung I, Yang D, Velamakanni A, Nguyen S T, Ruoff R S (2008) Aqueous suspension and characterization of chemically modified grapheme sheets. Chemistry of Materials 20:6592–6594.Google Scholar
  70. 70.
    Bourlinos A B, Gournis D, Petridis D, Szabo T, Szeri A, Dekany I (2003) Graphite oxide: chemical reduction to graphite and surface modificationwith primary aliphatic amines and amino acids. Chemistry of Materials 19: 6050–6055.Google Scholar
  71. 71.
    Lomeda J R, Doyle C D, Kosynkin D V, Hwang W F, Tour J M (2008) Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. Journal of American Chemical Society 130:16201–16206.Google Scholar
  72. 72.
    Li D, Muller M B, Gilje S, Kaner R B, Wallac G G (2007) Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnology 3:101–105.Google Scholar
  73. 73.
    Worsley K A, Ramesh P, Mandal S K, Niyogi S, Itkis M E, Haddon R C (2007) Soluble graphene derived from graphite fluoride. Chemical Physics Letters 445: 51–56.Google Scholar
  74. 74.
    Eda G, Chhowalla M (2009) Graphene-based composite thin films for electronics. Nano Letters 9: 814–818.Google Scholar
  75. 75.
    Bhadra S, Khstagir D, Singh A K, Lee J H (2009) Progress in preparation, processing and applications of polyaniline. Progress in Polymer Science 34:783–810.Google Scholar
  76. 76.
    Chen Z, Ren W, Gao L, Liu B, Pei S, Cheng H M (2011) Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nature Materials 10: 424–428.Google Scholar
  77. 77.
    Xu Y, Liu Z, Zhang X,Wang Y, Tian J, Huang Y (2009) A graphene hybrid material covalently functionalized with porphyrin: synthesis and optical limiting property. Advanced Mater 21: 1275–1279.Google Scholar
  78. 78.
    Berger C, Song Z, Li T, Li X, Ogbazghi AY, Feng R (2004) Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. Journal of Physics and Chemistry B 108:19912–19916.Google Scholar
  79. 79.
    Kim SC, Lee H, Jeong HM (2010) Effect of pyrene treatment on the properties of graphene/epoxy nanocomposites. Macromolecular Research 18(11): 1125–1128.Google Scholar
  80. 80.
    Zhang H B, Zheng W G, Yan Q, Yang Y, Wang J W, Lu Z H, Ji G Y, Yu Z Z (2010) Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer 51:1191–1196.Google Scholar
  81. 81.
    Hao R, Qian W, Zhang L, Hou Y (2008) Aqueous dispersions of TCNQ-anion stabilized graphene sheets. Chem Commun 48: 6576–6578.Google Scholar
  82. 82.
    Xu Y, Bai H, Lu G, Li C, Shi G (2008) Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. Journal of American Chemical Society 130:5856–5857.Google Scholar
  83. 83.
    Wang T X, Liang G Z, Yuan L, Gu A (2014) Unique hybridized graphene and its high dielectric constant composites with enhanced frequency stability, low dielectric loss and percolation threshold. Carbon 77: 920–932.Google Scholar
  84. 84.
    Li Y, Samad Y A, Polychronopoulou K, Alhassan S M, Liao K (2014) Highly Electrically Conductive Nanocomposites Based on PolymerInfused Graphene Sponges. Scientific Reports 4:4652 (1–6).Google Scholar
  85. 85.
    Zhou T N, Qi X D, Fu Q (2013) The preparation of the poly(vinyl alcohol)/graphene nanocomposites with low percolation threshold and high electrical conductivity by using the large-area reduced graphene oxide sheets. Express Polymer Letters 7: 747–755.Google Scholar
  86. 86.
    Park J U, Nam S W, Lee M S, Lieber C M (2012) Synthesis of monolithic graphene–graphite integrated electronics. Nature Materials 11: 120–125.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • P. Noorunnisa Khanam
    • 1
    Email author
  • Deepalekshmi Ponnamma
    • 2
  • M. A. AL-Madeed
    • 1
  1. 1.Centre for Advanced MaterialsQatar UniversityDohaQatar
  2. 2.School of Chemical SciencesMahatma Gandhi UniversityKottayamIndia

Personalised recommendations