Skip to main content

Graphene Nanocomposites for Electromagnetic Induction Shielding

  • Chapter
  • First Online:

Part of the book series: Springer Series on Polymer and Composite Materials ((SSPCM))

Abstract

The unique properties of graphene, such as high specific surface area, aspect ratio and electrical conductivity, make it very promising to fabricate electromagnetic induction (EMI) shielding materials . In this chapter, we firstly made a brief introduction about the development of EMI shielding materials as well as the preparation of graphene and polymer/graphene nanocomposites (PGNs). Typical surface modification of graphene to optimize its dispersion within polymer matrix was reviewed later. After that, we presented critical factors for the EMI shielding effectiveness (SE) of PGNs in detail. Meanwhile, the EMI shielding mechanism was introduced associated with corresponding examples.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

PGNs:

Polymer/graphene nanocomposites

EMI:

Electromagnetic interference

SE:

Shielding effectiveness

CNF:

Carbon nanofiber

MWCNTs:

Multi-walled carbon nanotubes

G–O:

Graphite oxide

GO:

Graphene oxide

RGO:

Reduced graphene oxide

GNSs:

Graphene nanosheets

G@Fe3O4 :

Fe3O4-decorated graphene

FGS:

Functionalized graphene sheets

Fe2O3 :

Ferric oxide

Fe3O4 :

Ferroferric oxide

PMMA:

Polymethylmethacrylate

PS:

Polystyrene

PVA:

Poly(vinyl alcohol)

PEI:

Polyetherimide

PC:

Polycarbonate

PSFG:

Polystyrene-functional graphene

P-GNS:

Pristine graphene nanosheets

S-GNS:

STAC-absorbed-GNSs

PANI:

Polyaniline

PVDF:

Polyinylidene fluoride

PU:

Polyurethane

WPU:

Water-borne polyurethane

PDA:

Polydopamine

EVA:

Ethylene-vinyl acetate

STAC:

Stearyl trimethyl ammonium chloride

WVIPS:

Water vapor induced phase separation

References

  1. Liu J W, Che R C, Chen H J et al (2012) Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3O4 cores and anatase TiO2 shells. Small 8: 1214-1221

    Google Scholar 

  2. Watts P C P, Hsu W K, Barnes, A et al (2003) High permittivity from defective multiwalled carbon nanotubes in the X-band. Adv Mater 15: 600-603

    Google Scholar 

  3. Chen Z P, Xu C, Ma C et al (2013) Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv Mater 25: 1296-1300

    Google Scholar 

  4. Chung D D L (2001) Electromagnetic interference shielding effectiveness of carbon materials. Carbon 39: 279-285

    Google Scholar 

  5. Nguyen M T, Diaz A F (1994) A novel method for the preparation of magnetic nanoparticles in a polypyrrole powder. Adv Mater 6: 858-860

    Google Scholar 

  6. Lee H C, Kim J Y, Noh C H et al (2006) Selective metal pattern formation and its EMI shielding efficiency. Appl Surf Sci 252: 2665-2672

    Google Scholar 

  7. Huang X H, Neretina S, Ei S et al (2009) Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv Mater 21: 4880-4910

    Google Scholar 

  8. Wang Y Y, Jing X L (2005) Intrinsically conducting polymers for electromagnetic interference shielding. Polym. Advan Technol 16: 344-351

    Google Scholar 

  9. Olmedo L, Hourquebie P, Jousse F (1993) Microwave absorbing materials based on conducting polymers. Adv Mater 5: 373-377

    Google Scholar 

  10. Joo J, Epstein A J (1994) Electromagnetic radiation shielding by intrinsically conducting polymers. Appl Phys Lett 65: 2278-2280

    Google Scholar 

  11. Chen D Z, Wang G S, He S et al (2013) Controllable fabrication of mono-dispersed RGO-hematite nanocomposites and their enhanced wave absorption properties. J Mater Chem A 1: 5996-6003

    Google Scholar 

  12. Rahaman M, Chaki T K, Khastgir D (2011) Development of high performance EMI shielding material from EVA, NBR, and their blends: effect of carbon black structure. J Mater Sci 46: 3989-3999

    Google Scholar 

  13. Yang Y, Gupta M C, Dudley K L et al (2005) Conductive carbon nanofiber–polymer foam structures. Adv Mater 17: 1999-2003

    Google Scholar 

  14. Yang Y, Gupta M C, Dudley K L et al (2005) Novel carbon nanotube−polystyrene foam composites for electromagnetic interference shielding. Nano Lett 5: 2131-2134.

    Google Scholar 

  15. Brosseau C, Boulic F, Queffelec P et al (1997) Dielectric and microstructure properties of polymer carbon black composites. J Appl Phys 81: 882-890

    Google Scholar 

  16. Brosseau C, Molinie P, Boulic F et al (2001) Mesostructure, electron paramagnetic resonance, and magnetic properties of polymer carbon black composites. J Appl Phys 89: 8297-8310

    Google Scholar 

  17. Brosseau C, Queffelec P, Talbot P (2001) Microwave characterization of filled polymers. J Appl Phys 89: 4532-4540

    Google Scholar 

  18. Al-Saleh M H, Sundararaj U (2009) A review of vapor grown carbon nanofiber/polymer conductive composites. Carbon 47: 2-22

    Google Scholar 

  19. Jou W S, Wu T L, Chiu S K et al (2002) The influence of fiber orientation on electromagnetic shielding in liquid-crystal polymers. J Electron Mater 31: 178-184

    Google Scholar 

  20. Kim H M, Kim K, Lee C Y et al (2004) Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst. Appl Phys Lett 84: 589-591

    Google Scholar 

  21. Thomassin J M, Pagnoulle C, Bednarz L et al (2008) Foams of polycaprolactone/MWNT nanocomposites for efficient EMI reduction. J Mater Chem 18: 792-796

    Google Scholar 

  22. Che R C, Peng L M, Duan X F et al (2004) Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv Mater 16: 401-405

    Google Scholar 

  23. Li N, Huang Y, Du F et al (2006) Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. Nano Lett 6: 1141-1145

    Google Scholar 

  24. Novoselov K S, Geim A K, Morozov S V et al (2004) Electric Field Effect in Atomically Thin Carbon Films. Science 306: 666-669

    Google Scholar 

  25. Balandin A A, Ghosh S, Bao W Z et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8: 902-907

    Google Scholar 

  26. Bolotin K I, Sikes K J, Jang Z et al (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146: 351-355

    Google Scholar 

  27. Stoller M D, Park S J, Zhu Y W et al (2008) Graphene-based ultracapacitors. Nano Lett 8: 3498-3502

    Google Scholar 

  28. Lee C, Wei X D, Kysar J W et al (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321: 385-388

    Google Scholar 

  29. Geim A K (2009) Graphene: status and prospects. Science 324: 1530-1534.

    Google Scholar 

  30. Li X S, Zhu Y W, Cai W W et al (2009) Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett 9: 4359-4363

    Google Scholar 

  31. Fan Z J, Yan J, Zhi L J et al (2010) A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors. Adv Mater 22: 3723-3728

    Google Scholar 

  32. Chen S S, Brown L, Levendorf M et al (2011) Oxidation resistance of graphene-coated Cu and Cu/Ni alloy. Acs Nano 5: 1321-1327

    Google Scholar 

  33. Schwierz F (2010) Graphene transistors. Nat Nanotechnol. 5: 487-496.

    Google Scholar 

  34. Wang D H, Kou R, Choi D et al. (2010) Ternary self-assembly of ordered metal oxide-graphene nanocomposites for electrochemical energy storage. Acs Nano 4: 1587-1595

    Google Scholar 

  35. Seger B, Kamat P V (2009) Fuel cell geared in reverse: photocatalytic hydrogen production using a TiO2/Nafion/Pt membrane assembly with no applied bias. J Phys Chem C 113: 18946-18952

    Google Scholar 

  36. Shao Y Y, Zhang S, Wang C M et al (2010) Highly durable graphene nanoplatelets supported Pt nanocatalysts for oxygen reduction. J Power Sources 195: 4600-4605

    Google Scholar 

  37. Li X M, Zhu H W, Wang K L et al (2010) Graphene-on-silicon schottky junction solar cells. Adv Mater 22: 2743-2748

    Google Scholar 

  38. Yin Z Y, Sun S Y, Salim T et al (2010) Organic photovoltaic devices using highly flexible reduced graphene oxide films as transparent electrodes. Acs Nano 4: 5263-5268

    Google Scholar 

  39. Zhang X Y, Li H P, Cui X L et al (2010) Graphene/TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting. J Mater Chem 20: 2801-2806

    Google Scholar 

  40. Ling X, Xie L M, Fang Y et al (2010) Can graphene be used as a substrate for Raman enhancement? Nano Lett 10: 553-561

    Google Scholar 

  41. Thrall E S, Crowther A C, Yu Z H et al (2012) R6G on graphene: high Raman detection sensitivity, yet decreased Raman cross-section. Nano Lett 12: 1571-1577

    Google Scholar 

  42. Hong S K, Kim K Y, Kim T Y et al (2012) Electromagnetic interference shielding effectiveness of monolayer graphene. Nanotechnology. doi: 10.1088/0957-4484/23/45/455704

  43. Thomassin J M, Jérôme C, Pardoen T et al (2013) Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Mat Sci Eng R 74: 211-232.

    Google Scholar 

  44. Kuilla T, Bhadra S, Yao D H et al (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35: 1350-1375.

    Google Scholar 

  45. Cai W W, Moore A L, Zhu Y W et al (2010) Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett 10: 1645-1651

    Google Scholar 

  46. Li X S, Cai W W, An J H et al (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324: 1312-1314

    Google Scholar 

  47. Kim K S, Zhao Y, Jang H et al (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457: 706-710

    Google Scholar 

  48. Berger C, Song Z M, Li X B et al (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science 312: 1191-1196

    Google Scholar 

  49. Li D, Muller M B, Gilje S et al (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3: 101-105

    Google Scholar 

  50. Tung V C, Allen M J, Yang Y et al (2009) High-throughput solution processing of large-scale graphene. Nat nanotechnol 4: 25-29

    Google Scholar 

  51. Schniepp H C, Li J L, McAllister M J et al (2006) Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B 110: 8535-8539

    Google Scholar 

  52. McAllister M J, Li J L, Adamson D H et al (2007) Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater 19: 4396-4404

    Google Scholar 

  53. Si Y C, Samulski E T (2008) Synthesis of water soluble graphene. Nano Lett 8: 1679-1682.

    Google Scholar 

  54. Zhang H B, Wang J W, Yan Q et al (2011) Vacuum-assited synthesis of graphene from thermal exfoliation and reduction of graphite oxide. J Mater Chem 21: 5392-5397

    Google Scholar 

  55. Shen B, Lu D D, Zhai W T et al (2013) Synthesis of graphene by low-temperature exfoliation and reduction of graphite oxide under ambient atmosphere. J Mater Chem 1: 50-53

    Google Scholar 

  56. Fang M, Wang K G, Lu H B et al (2009) Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. J Mater Chem 19: 7098-7105

    Google Scholar 

  57. Shen B, Zhai W T, Tao M M et al (2013) Chemical functionalization of graphene oxide toward the tailoring of the interface in polymer composites. Compos Sci Technol 77: 87-94

    Google Scholar 

  58. Shen B, Zhai W T, Lu D D et al (2012) Ultrasonication-assisted direct functionalization of graphene with macromolecules. Rsc Adv 2: 4713-4719

    Google Scholar 

  59. Stankovich S, Piner R D, Nguyen S T et al (2006) Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 44: 3342-3347

    Google Scholar 

  60. Su Q, Pang S P, Alijani V et al (2009) Composites of graphene with large aromatic molecules. Adv Mater 21: 3191-3195

    Google Scholar 

  61. Shen B, Zhai W T, Chen C et al (2011) Melt blending in situ enhances the interaction between polystyrene and graphene through pi-pi stacking. Acs Appl Mater Inter 3: 3103-3109

    Google Scholar 

  62. Shen B, Zhai W T, Tao M M et al (2013) Enhanced interfacial interaction between polycarbonate and thermally reduced graphene induced by melt blending. Compos Sci Technol 86: 109-116

    Google Scholar 

  63. Liang J J, Wang Y, Huang Y et al (2009) Electromagnetic interference shielding of graphene/epoxy composites. Carbon 47: 922-925

    Google Scholar 

  64. Yu H L, Wang T S, Wen B et al (2012) Graphene/polyaniline nanorod arrays: synthesis and excellent electromagnetic absorption properties. J Mater Chem 22: 21679-21685

    Google Scholar 

  65. Singh K, Ohlan A, Pham V H et al (2013) Nanostructured graphene/Fe3O4 incorporated polyaniline as a high performance shield against electromagnetic pollution. Nanoscale 5: 2411-2420

    Google Scholar 

  66. Bernal M M, Martin G M, Molenberg I et al (2014) Influence of carbon nanoparticles on the polymerization and EMI shielding properties of PU nanocomposite foams. Rsc Adv 4: 7911-7918

    Google Scholar 

  67. Liu J Q, Tang J G, Gooding J J (2012) Strategies for chemical modification of graphene and applications of chemically modified graphene. J Mater Chem 22: 12435-12452

    Google Scholar 

  68. Yan D X, Ren P G, Pang H et al (2012) Efficient electromagnetic interference shielding of lightweight graphene/polystyrene composite. J Mater Chem 22: 18772-18774

    Google Scholar 

  69. Zhang H B, Zheng W G, Yan Q et al (2012) The effect of surface chemistry of graphene on rheological and electrical properties of polymethylmethacrylate composites. Carbon 50: 5117-5125

    Google Scholar 

  70. Ling J Q, Zhai W T, Feng W W et al (2013) Facile preparation of lightweight microcellular polyetherimide/graphene composite foams for electromagnetic interference shielding. Acs Appl Mater Inter 5: 2677-2684

    Google Scholar 

  71. Eswaraiah V, Sankaranarayanan V, Ramaprabhu S (2011) Functionalized graphene-PVDF foam composites for EMI shielding. Macromol Mater Eng 296: 894-898

    Google Scholar 

  72. Maiti S, Shrivastava N K, Suin S et al (2013) Polystyrene/MWCNT/graphite nanoplate nanocomposites: efficient electromagnetic interference shielding material through graphite nanoplate-MWCNT-graphite nanoplate networking. Acs Appl Mater Inter 5: 4712-4724

    Google Scholar 

  73. Tong X C (2008) Advanced materials and design for electromagnetic interference shielding. CRC, Boca Raton.

    Google Scholar 

  74. Zhang H B, Yan Q, Zheng W G et al (2011) Tough graphene-polymer microcellular foams for electromagnetic interference shielding. Acs Appl Mater Inter 3: 918-924

    Google Scholar 

  75. Antunes M, Velasco J I (2014) Multifunctional polymer foams with carbon nanoparticles. Prog Polym Sci 39: 486-509

    Google Scholar 

  76. Song W L, Cao M S, Lu M M et al (2014) Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding. Carbon 66: 67-76

    Google Scholar 

  77. Gelves G A, Al-Saleh M H, Sundararaj U et al (2011) Highly electrically conductive and high performance EMI shielding nanowire/polymer nanocomposites by miscible mixing and precipitation. J Mater Chem 21: 829-836

    Google Scholar 

  78. Shante V K, Kirkpatrick S (1971) An introduction to percolation theory. Adv Phys 20: 325-357

    Google Scholar 

  79. Basavaraja C, Kim W J, Kim D G et al (2012) Microwave absorption studies of polyaniline nanocomposites encapsulating gold nanoparticles on the surface of reduced graphene oxide in the presence of 2-naphthalene sulfonic acid. Colloid Polym Sci 290: 829-838

    Google Scholar 

  80. Hsiao S T, Ma C C M, Tien H W et al (2013) Using a non-covalent modification to prepare a high electromagnetic interference shielding performance graphene nanosheet/water-borne polyurethane composite. Carbon 60: 57-66

    Google Scholar 

  81. Yang L P, Phua S L, Toh C L et al (2013) Polydopamine-coated graphene as multifunctional nanofillers in polyurethane. Rsc Adv 3: 6377-6385

    Google Scholar 

  82. Song W L, Cao M S, Lu M M et al (2013) Improved dielectric properties and highly efficient and broadened bandwidth electromagnetic attenuation of thickness-decreased carbon nanosheet/wax composites. J Mater Chem C 1: 1846-1854

    Google Scholar 

  83. Song W L, Cao M S, Lu M M et al (2013) Alignment of graphene sheets in wax composites for electromagnetic interference shielding improvement. Nanotechnology. doi: 10.1088/0957-4484/24/11/115708

  84. Tripathi S N, Saini P, Gupta D et al (2013) Electrical and mechanical properties of PMMA/reduced graphene oxide nanocomposites prepared via in situ polymerization. J Mater Sci 48: 6223-6232

    Google Scholar 

  85. Yuan B Q, Yu L M, Sheng L M et al (2012) Comparison of electromagnetic interference shielding properties between single-wall carbon nanotube and graphene sheet/polyaniline composites. J Phys Appl Phys. doi: 10.1088/0022-3727/45/23/235108

  86. Chen T T, Deng F, Zhu J et al (2012) Hexagonal and cubic Ni nanocrystals grown on graphene: phase-controlled synthesis, characterization and their enhanced microwave absorption properties. J Mater Chem 22: 15190-15197

    Google Scholar 

  87. Hu C G, Mou Z Y, Lu G W et al (2013) 3D graphene-Fe3O4 nanocomposites with high-performance microwave absorption. Phys Chem Chem Phys 15: 13038-13043

    Google Scholar 

  88. Chen Y J, Xiao G, Wang T S et al (2011) Porous Fe3O4/carbon core/shell nanorods: synthesis and electromagnetic properties. J Phys Chem C 115: 13603-13608

    Google Scholar 

  89. Shen B, Zhai W T, Tao M M et al (2013) Lightweight, multifunctional polyetherimide/graphene@Fe3O4 composite foams for shielding of electromagnetic pollution. Acs Appl Mater Inter 5: 11383-11391

    Google Scholar 

  90. Yuan B H, Bao C L, Qian X D et al Design of artificial nacre-like hybrid films as shielding to mitigate electromagnetic pollution. Carbon 75: 178-189

    Google Scholar 

  91. Singh A P, Garg P, Alam F et al (2012) Phenolic resin-based composite sheets filled with mixtures of reduced graphene oxide, gamma-Fe2O3 and carbon fibers for excellent electromagnetic interference shielding in the X-band. Carbon 50: 3868-3875

    Google Scholar 

  92. Liu P B, Huang Y, Wang L et al (2013) Synthesis and excellent electromagnetic absorption properties of polypyrrole-reduced graphene oxide-Co3O4 nanocomposites. J Alloy Compd 573: 151-156

    Google Scholar 

  93. Zong M, Huang Y, Zhao Yang et al (2013) Facile preparation, high microwave absorption and microwave absorbing mechanism of RGO-Fe3O4 composites. Rsc Adv 3: 23638-23648

    Google Scholar 

  94. Tung T T, Feller J F, Kim H et al (2012) Electromagnetic properties of Fe3O4-functionalized graphene and its composites with a conducting polymer. J Polym Sci Pol Chem 50: 927-935

    Google Scholar 

  95. He H K, Gao C (2010) Supraparamagnetic, conductive, and processable multifunctional graphene nanosheets coated with high-density Fe3O4 nanoparticles. Acs Appl Mater Inter 2: 3201-3210.

    Google Scholar 

  96. Gupta T K, Singh B P, Singh V N et al (2014) MnO2 decorated graphene nanoribbons with superior permittivity and excellent microwave shielding properties. J Mater Chem A 2: 4256-4263

    Google Scholar 

  97. Singh A P, Mishra M, Sambyal P et al (2014) Encapsulation of gamma-Fe2O3 decorated reduced graphene oxide in polyaniline core-shell tubes as an exceptional tracker for electromagnetic environmental pollution. J Mater Chem A 2: 3581-3593

    Google Scholar 

  98. Wang C, Han X J, Xu P et al (2011) The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material. Appl Phys Lett. doi: 10.1063/1.3555436

  99. Geetha S, Satheesh Kumar K K, Rao C R K et al (2009) EMI shielding: methods and materials—a review. J Appl Polym Sci 112: 2073-2086

    Google Scholar 

  100. Krause B, Koops G H, van der Vegt N F A et al (2002) Ultralow-k dielectrics made by supercritical foaming of thin polymer films. Adv Mater 14: 1041-1046

    Google Scholar 

  101. Che R C, Peng L M, Duan X F et al (2004) Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv Mater 16: 401-405

    Google Scholar 

  102. Lee C C, Chen D H (2007) Ag nanoshell-induced dual-frequency electromagnetic wave absorption of Ni nanoparticles. Appl Phys Lett. doi: 10.1063/1.2731706

  103. Yuen S M, Ma C C M, Chuang C Y et al (2008) Effect of processing method on the shielding effectiveness of electromagnetic interference of MWCNT/PMMA composites. Compos Sci Technol 68: 963-968

    Google Scholar 

  104. Chen M X, Zhu Y, Pan Y B et al (2011) Gradient multilayer structural design of CNTs/SiO2 composites for improving microwave absorbing properties. Mater Design 32: 3013-3016

    Google Scholar 

  105. Yan D X, Pang H, Xu L et al (2014) Electromagnetic interference shielding of segregated polymer composite with an ultralow loading of in situ thermally reduced graphene oxide. Nanotechnology. doi: 10.1088/0957-4484/25/14/145705

  106. Joshi A, Bajaj A, Singh R et al (2013) Graphene nanoribbon-PVA composite as EMI shielding material in the X band. Nanotechnology. doi: 10.1088/0957-4484/24/45/455705

  107. Basavaraja C, Kim W J, Kim Y D et al (2011) Synthesis of polyaniline-gold/graphene oxide composite and microwave absorption characteristics of the composite films. Mater Lett 65: 3120-3123

    Google Scholar 

  108. Gupta T K, Singh B P, Singh V N et al (2014) Multi-walled carbon nanotube-graphene-polyaniline multiphase nanocomposite with superior electromagnetic shielding effectiveness. Nanoscale 6: 842-851

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wentao Zhai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Li, Y., Zhai, W. (2015). Graphene Nanocomposites for Electromagnetic Induction Shielding. In: Sadasivuni, K., Ponnamma, D., Kim, J., Thomas, S. (eds) Graphene-Based Polymer Nanocomposites in Electronics. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-13875-6_13

Download citation

Publish with us

Policies and ethics