Advertisement

Graphene Nanocomposites for Electromagnetic Induction Shielding

  • Yang Li
  • Wentao ZhaiEmail author
Chapter
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)

Abstract

The unique properties of graphene, such as high specific surface area, aspect ratio and electrical conductivity, make it very promising to fabricate electromagnetic induction (EMI) shielding materials . In this chapter, we firstly made a brief introduction about the development of EMI shielding materials as well as the preparation of graphene and polymer/graphene nanocomposites (PGNs). Typical surface modification of graphene to optimize its dispersion within polymer matrix was reviewed later. After that, we presented critical factors for the EMI shielding effectiveness (SE) of PGNs in detail. Meanwhile, the EMI shielding mechanism was introduced associated with corresponding examples.

Keywords

Electromagnetic interference Shielding effectiveness Graphene Polymer Nanocomposites Electrical conductivity 

Abbreviations

PGNs

Polymer/graphene nanocomposites

EMI

Electromagnetic interference

SE

Shielding effectiveness

CNF

Carbon nanofiber

MWCNTs

Multi-walled carbon nanotubes

G–O

Graphite oxide

GO

Graphene oxide

RGO

Reduced graphene oxide

GNSs

Graphene nanosheets

G@Fe3O4

Fe3O4-decorated graphene

FGS

Functionalized graphene sheets

Fe2O3

Ferric oxide

Fe3O4

Ferroferric oxide

PMMA

Polymethylmethacrylate

PS

Polystyrene

PVA

Poly(vinyl alcohol)

PEI

Polyetherimide

PC

Polycarbonate

PSFG

Polystyrene-functional graphene

P-GNS

Pristine graphene nanosheets

S-GNS

STAC-absorbed-GNSs

PANI

Polyaniline

PVDF

Polyinylidene fluoride

PU

Polyurethane

WPU

Water-borne polyurethane

PDA

Polydopamine

EVA

Ethylene-vinyl acetate

STAC

Stearyl trimethyl ammonium chloride

WVIPS

Water vapor induced phase separation

References

  1. 1.
    Liu J W, Che R C, Chen H J et al (2012) Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3O4 cores and anatase TiO2 shells. Small 8: 1214-1221Google Scholar
  2. 2.
    Watts P C P, Hsu W K, Barnes, A et al (2003) High permittivity from defective multiwalled carbon nanotubes in the X-band. Adv Mater 15: 600-603Google Scholar
  3. 3.
    Chen Z P, Xu C, Ma C et al (2013) Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv Mater 25: 1296-1300Google Scholar
  4. 4.
    Chung D D L (2001) Electromagnetic interference shielding effectiveness of carbon materials. Carbon 39: 279-285Google Scholar
  5. 5.
    Nguyen M T, Diaz A F (1994) A novel method for the preparation of magnetic nanoparticles in a polypyrrole powder. Adv Mater 6: 858-860Google Scholar
  6. 6.
    Lee H C, Kim J Y, Noh C H et al (2006) Selective metal pattern formation and its EMI shielding efficiency. Appl Surf Sci 252: 2665-2672Google Scholar
  7. 7.
    Huang X H, Neretina S, Ei S et al (2009) Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv Mater 21: 4880-4910Google Scholar
  8. 8.
    Wang Y Y, Jing X L (2005) Intrinsically conducting polymers for electromagnetic interference shielding. Polym. Advan Technol 16: 344-351Google Scholar
  9. 9.
    Olmedo L, Hourquebie P, Jousse F (1993) Microwave absorbing materials based on conducting polymers. Adv Mater 5: 373-377Google Scholar
  10. 10.
    Joo J, Epstein A J (1994) Electromagnetic radiation shielding by intrinsically conducting polymers. Appl Phys Lett 65: 2278-2280Google Scholar
  11. 11.
    Chen D Z, Wang G S, He S et al (2013) Controllable fabrication of mono-dispersed RGO-hematite nanocomposites and their enhanced wave absorption properties. J Mater Chem A 1: 5996-6003Google Scholar
  12. 12.
    Rahaman M, Chaki T K, Khastgir D (2011) Development of high performance EMI shielding material from EVA, NBR, and their blends: effect of carbon black structure. J Mater Sci 46: 3989-3999Google Scholar
  13. 13.
    Yang Y, Gupta M C, Dudley K L et al (2005) Conductive carbon nanofiber–polymer foam structures. Adv Mater 17: 1999-2003Google Scholar
  14. 14.
    Yang Y, Gupta M C, Dudley K L et al (2005) Novel carbon nanotube−polystyrene foam composites for electromagnetic interference shielding. Nano Lett 5: 2131-2134.Google Scholar
  15. 15.
    Brosseau C, Boulic F, Queffelec P et al (1997) Dielectric and microstructure properties of polymer carbon black composites. J Appl Phys 81: 882-890Google Scholar
  16. 16.
    Brosseau C, Molinie P, Boulic F et al (2001) Mesostructure, electron paramagnetic resonance, and magnetic properties of polymer carbon black composites. J Appl Phys 89: 8297-8310Google Scholar
  17. 17.
    Brosseau C, Queffelec P, Talbot P (2001) Microwave characterization of filled polymers. J Appl Phys 89: 4532-4540Google Scholar
  18. 18.
    Al-Saleh M H, Sundararaj U (2009) A review of vapor grown carbon nanofiber/polymer conductive composites. Carbon 47: 2-22Google Scholar
  19. 19.
    Jou W S, Wu T L, Chiu S K et al (2002) The influence of fiber orientation on electromagnetic shielding in liquid-crystal polymers. J Electron Mater 31: 178-184Google Scholar
  20. 20.
    Kim H M, Kim K, Lee C Y et al (2004) Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst. Appl Phys Lett 84: 589-591Google Scholar
  21. 21.
    Thomassin J M, Pagnoulle C, Bednarz L et al (2008) Foams of polycaprolactone/MWNT nanocomposites for efficient EMI reduction. J Mater Chem 18: 792-796Google Scholar
  22. 22.
    Che R C, Peng L M, Duan X F et al (2004) Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv Mater 16: 401-405Google Scholar
  23. 23.
    Li N, Huang Y, Du F et al (2006) Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. Nano Lett 6: 1141-1145Google Scholar
  24. 24.
    Novoselov K S, Geim A K, Morozov S V et al (2004) Electric Field Effect in Atomically Thin Carbon Films. Science 306: 666-669Google Scholar
  25. 25.
    Balandin A A, Ghosh S, Bao W Z et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8: 902-907Google Scholar
  26. 26.
    Bolotin K I, Sikes K J, Jang Z et al (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146: 351-355Google Scholar
  27. 27.
    Stoller M D, Park S J, Zhu Y W et al (2008) Graphene-based ultracapacitors. Nano Lett 8: 3498-3502Google Scholar
  28. 28.
    Lee C, Wei X D, Kysar J W et al (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321: 385-388Google Scholar
  29. 29.
    Geim A K (2009) Graphene: status and prospects. Science 324: 1530-1534.Google Scholar
  30. 30.
    Li X S, Zhu Y W, Cai W W et al (2009) Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett 9: 4359-4363Google Scholar
  31. 31.
    Fan Z J, Yan J, Zhi L J et al (2010) A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors. Adv Mater 22: 3723-3728Google Scholar
  32. 32.
    Chen S S, Brown L, Levendorf M et al (2011) Oxidation resistance of graphene-coated Cu and Cu/Ni alloy. Acs Nano 5: 1321-1327Google Scholar
  33. 33.
    Schwierz F (2010) Graphene transistors. Nat Nanotechnol. 5: 487-496.Google Scholar
  34. 34.
    Wang D H, Kou R, Choi D et al. (2010) Ternary self-assembly of ordered metal oxide-graphene nanocomposites for electrochemical energy storage. Acs Nano 4: 1587-1595Google Scholar
  35. 35.
    Seger B, Kamat P V (2009) Fuel cell geared in reverse: photocatalytic hydrogen production using a TiO2/Nafion/Pt membrane assembly with no applied bias. J Phys Chem C 113: 18946-18952Google Scholar
  36. 36.
    Shao Y Y, Zhang S, Wang C M et al (2010) Highly durable graphene nanoplatelets supported Pt nanocatalysts for oxygen reduction. J Power Sources 195: 4600-4605Google Scholar
  37. 37.
    Li X M, Zhu H W, Wang K L et al (2010) Graphene-on-silicon schottky junction solar cells. Adv Mater 22: 2743-2748Google Scholar
  38. 38.
    Yin Z Y, Sun S Y, Salim T et al (2010) Organic photovoltaic devices using highly flexible reduced graphene oxide films as transparent electrodes. Acs Nano 4: 5263-5268Google Scholar
  39. 39.
    Zhang X Y, Li H P, Cui X L et al (2010) Graphene/TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting. J Mater Chem 20: 2801-2806Google Scholar
  40. 40.
    Ling X, Xie L M, Fang Y et al (2010) Can graphene be used as a substrate for Raman enhancement? Nano Lett 10: 553-561Google Scholar
  41. 41.
    Thrall E S, Crowther A C, Yu Z H et al (2012) R6G on graphene: high Raman detection sensitivity, yet decreased Raman cross-section. Nano Lett 12: 1571-1577Google Scholar
  42. 42.
    Hong S K, Kim K Y, Kim T Y et al (2012) Electromagnetic interference shielding effectiveness of monolayer graphene. Nanotechnology. doi:  10.1088/0957-4484/23/45/455704
  43. 43.
    Thomassin J M, Jérôme C, Pardoen T et al (2013) Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Mat Sci Eng R 74: 211-232.Google Scholar
  44. 44.
    Kuilla T, Bhadra S, Yao D H et al (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35: 1350-1375.Google Scholar
  45. 45.
    Cai W W, Moore A L, Zhu Y W et al (2010) Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett 10: 1645-1651Google Scholar
  46. 46.
    Li X S, Cai W W, An J H et al (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324: 1312-1314Google Scholar
  47. 47.
    Kim K S, Zhao Y, Jang H et al (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457: 706-710Google Scholar
  48. 48.
    Berger C, Song Z M, Li X B et al (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science 312: 1191-1196Google Scholar
  49. 49.
    Li D, Muller M B, Gilje S et al (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3: 101-105Google Scholar
  50. 50.
    Tung V C, Allen M J, Yang Y et al (2009) High-throughput solution processing of large-scale graphene. Nat nanotechnol 4: 25-29Google Scholar
  51. 51.
    Schniepp H C, Li J L, McAllister M J et al (2006) Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B 110: 8535-8539Google Scholar
  52. 52.
    McAllister M J, Li J L, Adamson D H et al (2007) Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater 19: 4396-4404Google Scholar
  53. 53.
    Si Y C, Samulski E T (2008) Synthesis of water soluble graphene. Nano Lett 8: 1679-1682.Google Scholar
  54. 54.
    Zhang H B, Wang J W, Yan Q et al (2011) Vacuum-assited synthesis of graphene from thermal exfoliation and reduction of graphite oxide. J Mater Chem 21: 5392-5397Google Scholar
  55. 55.
    Shen B, Lu D D, Zhai W T et al (2013) Synthesis of graphene by low-temperature exfoliation and reduction of graphite oxide under ambient atmosphere. J Mater Chem 1: 50-53Google Scholar
  56. 56.
    Fang M, Wang K G, Lu H B et al (2009) Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. J Mater Chem 19: 7098-7105Google Scholar
  57. 57.
    Shen B, Zhai W T, Tao M M et al (2013) Chemical functionalization of graphene oxide toward the tailoring of the interface in polymer composites. Compos Sci Technol 77: 87-94Google Scholar
  58. 58.
    Shen B, Zhai W T, Lu D D et al (2012) Ultrasonication-assisted direct functionalization of graphene with macromolecules. Rsc Adv 2: 4713-4719Google Scholar
  59. 59.
    Stankovich S, Piner R D, Nguyen S T et al (2006) Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 44: 3342-3347Google Scholar
  60. 60.
    Su Q, Pang S P, Alijani V et al (2009) Composites of graphene with large aromatic molecules. Adv Mater 21: 3191-3195Google Scholar
  61. 61.
    Shen B, Zhai W T, Chen C et al (2011) Melt blending in situ enhances the interaction between polystyrene and graphene through pi-pi stacking. Acs Appl Mater Inter 3: 3103-3109Google Scholar
  62. 62.
    Shen B, Zhai W T, Tao M M et al (2013) Enhanced interfacial interaction between polycarbonate and thermally reduced graphene induced by melt blending. Compos Sci Technol 86: 109-116Google Scholar
  63. 63.
    Liang J J, Wang Y, Huang Y et al (2009) Electromagnetic interference shielding of graphene/epoxy composites. Carbon 47: 922-925Google Scholar
  64. 64.
    Yu H L, Wang T S, Wen B et al (2012) Graphene/polyaniline nanorod arrays: synthesis and excellent electromagnetic absorption properties. J Mater Chem 22: 21679-21685Google Scholar
  65. 65.
    Singh K, Ohlan A, Pham V H et al (2013) Nanostructured graphene/Fe3O4 incorporated polyaniline as a high performance shield against electromagnetic pollution. Nanoscale 5: 2411-2420Google Scholar
  66. 66.
    Bernal M M, Martin G M, Molenberg I et al (2014) Influence of carbon nanoparticles on the polymerization and EMI shielding properties of PU nanocomposite foams. Rsc Adv 4: 7911-7918Google Scholar
  67. 67.
    Liu J Q, Tang J G, Gooding J J (2012) Strategies for chemical modification of graphene and applications of chemically modified graphene. J Mater Chem 22: 12435-12452Google Scholar
  68. 68.
    Yan D X, Ren P G, Pang H et al (2012) Efficient electromagnetic interference shielding of lightweight graphene/polystyrene composite. J Mater Chem 22: 18772-18774Google Scholar
  69. 69.
    Zhang H B, Zheng W G, Yan Q et al (2012) The effect of surface chemistry of graphene on rheological and electrical properties of polymethylmethacrylate composites. Carbon 50: 5117-5125Google Scholar
  70. 70.
    Ling J Q, Zhai W T, Feng W W et al (2013) Facile preparation of lightweight microcellular polyetherimide/graphene composite foams for electromagnetic interference shielding. Acs Appl Mater Inter 5: 2677-2684Google Scholar
  71. 71.
    Eswaraiah V, Sankaranarayanan V, Ramaprabhu S (2011) Functionalized graphene-PVDF foam composites for EMI shielding. Macromol Mater Eng 296: 894-898Google Scholar
  72. 72.
    Maiti S, Shrivastava N K, Suin S et al (2013) Polystyrene/MWCNT/graphite nanoplate nanocomposites: efficient electromagnetic interference shielding material through graphite nanoplate-MWCNT-graphite nanoplate networking. Acs Appl Mater Inter 5: 4712-4724Google Scholar
  73. 73.
    Tong X C (2008) Advanced materials and design for electromagnetic interference shielding. CRC, Boca Raton.Google Scholar
  74. 74.
    Zhang H B, Yan Q, Zheng W G et al (2011) Tough graphene-polymer microcellular foams for electromagnetic interference shielding. Acs Appl Mater Inter 3: 918-924Google Scholar
  75. 75.
    Antunes M, Velasco J I (2014) Multifunctional polymer foams with carbon nanoparticles. Prog Polym Sci 39: 486-509Google Scholar
  76. 76.
    Song W L, Cao M S, Lu M M et al (2014) Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding. Carbon 66: 67-76Google Scholar
  77. 77.
    Gelves G A, Al-Saleh M H, Sundararaj U et al (2011) Highly electrically conductive and high performance EMI shielding nanowire/polymer nanocomposites by miscible mixing and precipitation. J Mater Chem 21: 829-836Google Scholar
  78. 78.
    Shante V K, Kirkpatrick S (1971) An introduction to percolation theory. Adv Phys 20: 325-357Google Scholar
  79. 79.
    Basavaraja C, Kim W J, Kim D G et al (2012) Microwave absorption studies of polyaniline nanocomposites encapsulating gold nanoparticles on the surface of reduced graphene oxide in the presence of 2-naphthalene sulfonic acid. Colloid Polym Sci 290: 829-838Google Scholar
  80. 80.
    Hsiao S T, Ma C C M, Tien H W et al (2013) Using a non-covalent modification to prepare a high electromagnetic interference shielding performance graphene nanosheet/water-borne polyurethane composite. Carbon 60: 57-66Google Scholar
  81. 81.
    Yang L P, Phua S L, Toh C L et al (2013) Polydopamine-coated graphene as multifunctional nanofillers in polyurethane. Rsc Adv 3: 6377-6385Google Scholar
  82. 82.
    Song W L, Cao M S, Lu M M et al (2013) Improved dielectric properties and highly efficient and broadened bandwidth electromagnetic attenuation of thickness-decreased carbon nanosheet/wax composites. J Mater Chem C 1: 1846-1854Google Scholar
  83. 83.
    Song W L, Cao M S, Lu M M et al (2013) Alignment of graphene sheets in wax composites for electromagnetic interference shielding improvement. Nanotechnology. doi:  10.1088/0957-4484/24/11/115708
  84. 84.
    Tripathi S N, Saini P, Gupta D et al (2013) Electrical and mechanical properties of PMMA/reduced graphene oxide nanocomposites prepared via in situ polymerization. J Mater Sci 48: 6223-6232Google Scholar
  85. 85.
    Yuan B Q, Yu L M, Sheng L M et al (2012) Comparison of electromagnetic interference shielding properties between single-wall carbon nanotube and graphene sheet/polyaniline composites. J Phys Appl Phys. doi:  10.1088/0022-3727/45/23/235108
  86. 86.
    Chen T T, Deng F, Zhu J et al (2012) Hexagonal and cubic Ni nanocrystals grown on graphene: phase-controlled synthesis, characterization and their enhanced microwave absorption properties. J Mater Chem 22: 15190-15197Google Scholar
  87. 87.
    Hu C G, Mou Z Y, Lu G W et al (2013) 3D graphene-Fe3O4 nanocomposites with high-performance microwave absorption. Phys Chem Chem Phys 15: 13038-13043Google Scholar
  88. 88.
    Chen Y J, Xiao G, Wang T S et al (2011) Porous Fe3O4/carbon core/shell nanorods: synthesis and electromagnetic properties. J Phys Chem C 115: 13603-13608Google Scholar
  89. 89.
    Shen B, Zhai W T, Tao M M et al (2013) Lightweight, multifunctional polyetherimide/graphene@Fe3O4 composite foams for shielding of electromagnetic pollution. Acs Appl Mater Inter 5: 11383-11391Google Scholar
  90. 90.
    Yuan B H, Bao C L, Qian X D et al Design of artificial nacre-like hybrid films as shielding to mitigate electromagnetic pollution. Carbon 75: 178-189Google Scholar
  91. 91.
    Singh A P, Garg P, Alam F et al (2012) Phenolic resin-based composite sheets filled with mixtures of reduced graphene oxide, gamma-Fe2O3 and carbon fibers for excellent electromagnetic interference shielding in the X-band. Carbon 50: 3868-3875Google Scholar
  92. 92.
    Liu P B, Huang Y, Wang L et al (2013) Synthesis and excellent electromagnetic absorption properties of polypyrrole-reduced graphene oxide-Co3O4 nanocomposites. J Alloy Compd 573: 151-156Google Scholar
  93. 93.
    Zong M, Huang Y, Zhao Yang et al (2013) Facile preparation, high microwave absorption and microwave absorbing mechanism of RGO-Fe3O4 composites. Rsc Adv 3: 23638-23648Google Scholar
  94. 94.
    Tung T T, Feller J F, Kim H et al (2012) Electromagnetic properties of Fe3O4-functionalized graphene and its composites with a conducting polymer. J Polym Sci Pol Chem 50: 927-935Google Scholar
  95. 95.
    He H K, Gao C (2010) Supraparamagnetic, conductive, and processable multifunctional graphene nanosheets coated with high-density Fe3O4 nanoparticles. Acs Appl Mater Inter 2: 3201-3210.Google Scholar
  96. 96.
    Gupta T K, Singh B P, Singh V N et al (2014) MnO2 decorated graphene nanoribbons with superior permittivity and excellent microwave shielding properties. J Mater Chem A 2: 4256-4263Google Scholar
  97. 97.
    Singh A P, Mishra M, Sambyal P et al (2014) Encapsulation of gamma-Fe2O3 decorated reduced graphene oxide in polyaniline core-shell tubes as an exceptional tracker for electromagnetic environmental pollution. J Mater Chem A 2: 3581-3593Google Scholar
  98. 98.
    Wang C, Han X J, Xu P et al (2011) The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material. Appl Phys Lett. doi:  10.1063/1.3555436
  99. 99.
    Geetha S, Satheesh Kumar K K, Rao C R K et al (2009) EMI shielding: methods and materials—a review. J Appl Polym Sci 112: 2073-2086Google Scholar
  100. 100.
    Krause B, Koops G H, van der Vegt N F A et al (2002) Ultralow-k dielectrics made by supercritical foaming of thin polymer films. Adv Mater 14: 1041-1046Google Scholar
  101. 101.
    Che R C, Peng L M, Duan X F et al (2004) Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv Mater 16: 401-405Google Scholar
  102. 102.
    Lee C C, Chen D H (2007) Ag nanoshell-induced dual-frequency electromagnetic wave absorption of Ni nanoparticles. Appl Phys Lett. doi:  10.1063/1.2731706
  103. 103.
    Yuen S M, Ma C C M, Chuang C Y et al (2008) Effect of processing method on the shielding effectiveness of electromagnetic interference of MWCNT/PMMA composites. Compos Sci Technol 68: 963-968Google Scholar
  104. 104.
    Chen M X, Zhu Y, Pan Y B et al (2011) Gradient multilayer structural design of CNTs/SiO2 composites for improving microwave absorbing properties. Mater Design 32: 3013-3016Google Scholar
  105. 105.
    Yan D X, Pang H, Xu L et al (2014) Electromagnetic interference shielding of segregated polymer composite with an ultralow loading of in situ thermally reduced graphene oxide. Nanotechnology. doi:  10.1088/0957-4484/25/14/145705
  106. 106.
    Joshi A, Bajaj A, Singh R et al (2013) Graphene nanoribbon-PVA composite as EMI shielding material in the X band. Nanotechnology. doi:  10.1088/0957-4484/24/45/455705
  107. 107.
    Basavaraja C, Kim W J, Kim Y D et al (2011) Synthesis of polyaniline-gold/graphene oxide composite and microwave absorption characteristics of the composite films. Mater Lett 65: 3120-3123Google Scholar
  108. 108.
    Gupta T K, Singh B P, Singh V N et al (2014) Multi-walled carbon nanotube-graphene-polyaniline multiphase nanocomposite with superior electromagnetic shielding effectiveness. Nanoscale 6: 842-851Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Ningbo Institute of Material Technology and Engineering, Chinese Academy of SciencesNingboChina

Personalised recommendations