Advertisement

Graphene/Polymer Nanocomposites as Microwave Absorbers

  • Vadali V. S. S. SrikanthEmail author
  • K. C. James RajuEmail author
Chapter
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)

Abstract

A major application identified for graphene/polymer nanocomposites is as electromagnetic (EM) wave absorbers in high frequency electronics which is the backbone of present day communication systems. In this application area, thin and flexible absorbers are essential for ensuring electromagnetic interference (EMI)/EM compatibility standards. Presently, communication modes are primarily mobile in nature and inherently light weight and small in size. In this context, there is a great demand for high performance novel absorbing materials that can offer required solutions. The properties of graphene-filled polymer nanocomposites clearly make them outstanding candidates for microwave absorption. Graphene as a filler is quite unique as it offers the highest surface-to-volume ratio and hence once it is incorporated inside a polymer matrix it offers increased conductive and dielectric loss without a large increase in impedance mismatch . It is possible to disperse graphene in some polymers uniformly and hence their large surface-to-volume ratio becomes advantageous. Once they are well dispersed in the host, the composite can be imagined as a kind of distributed capacitors combining in series and parallel resulting in reduced capacitance but increased dissipation, yielding impedance-matched absorber. Graphene can be functionalized with various functional groups giving an additional degree of freedom to fine-tune its properties. This in turn increases the flexibility in designing novel graphene-based materials. For an absorber, not only its EM response but its mechanical, adhesive , and weatherability characteristics are also important. Since meeting the EM absorption requirement over a range of frequencies by a single material is difficult, the possibility of functionalization of graphene opens up many opportunities and hence graphene/polymer nanocomposites open up scope for a wide spectrum of combinatorial investigations that are able to give solutions for the emerging scenario where in the usage of microwave spectrum is becoming more widespread, rather than not merely confined to the strategic sector as it used to be.

Keywords

Microwave Shielding Graphene Absorbers 

References

  1. 1.
    Arthur R Von Hippel, Dielectric Materials and Applications, Artech House, 1995Google Scholar
  2. 2.
    L. F. Chen, C. K. Ong, C. P. Neo, V. V. Varadan, and Vijay K. Varadan Microwave Electronics: Measurement and Materials Characterization, 2004, WileyGoogle Scholar
  3. 3.
    Paul Dixon, IEEE Microwave magazine, 2005, 6 (2), 74Google Scholar
  4. 4.
    Y. J. An, K. Nishida, T. Yamamoto, S. Ueda and T. Deguchi, Journal of Ceramic Processing Research, 2008, 9(4), 430Google Scholar
  5. 5.
    S.-H. Park, P.Theilmann, P. Asbeck, and P. R. Bandaru, The IEEE Transactionson Nanotechnology, 2009, 13, 1Google Scholar
  6. 6.
    W. B Weir, Proceedings of the IEEE, 1974, 62, 1, 33Google Scholar
  7. 7.
    M. D. Janezic and J. A. Jargon, IEEE Microwave and Guided Wave Letters, 1999, 9(2), 76Google Scholar
  8. 8.
    K. Sudheendran, K. C. James Raju, M. Ghanashyam Krishna, and Anil. K Bhatnagar, URSI Proceedings, 2006, ProcGA05/pdf/D06b.4(0873)Google Scholar
  9. 9.
    D. V. Blackham and R. D. Pollard, IEEE Transactions on Instrumentation and Measurement, 1997, 46(5), 1093Google Scholar
  10. 10.
    P. F. Goldsmith, “Quasi-Optical Techniques”, Proceedings of The IEEE, 1992, 80, 11Google Scholar
  11. 11.
    J. Baker-Jarvis, E. J. Vanzura, and W. A. Kissick, IEEE Transactions on Microwave Theory and Technology, 1990, 38, 1096Google Scholar
  12. 12.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science, 2004, 306, 666Google Scholar
  13. 13.
    A. K. Geim and K. S. Novoselov, Nature Materials, 2007, 6 (3), 183Google Scholar
  14. 14.
    A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Nano Letters, 2008, 8, 902Google Scholar
  15. 15.
    K. I. Bolotin K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, Solid State Communications, 2008, 146, 351Google Scholar
  16. 16.
    M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, Nano Letters, 2008, 8, 3498Google Scholar
  17. 17.
    A. K. Geim, Science, 2009, 324, 1530Google Scholar
  18. 18.
    C. Wang, X. Han, P. Xu, X. Zhang, Y. Du, S. Hu, J. Wang, and X. Wang, Applied Physics Letters, 2011, 98, 072906Google Scholar
  19. 19.
    F. Qin and C. Brosseau, Applied Physics Letters, 2012, 100, 046101Google Scholar
  20. 20.
    C. Wang, X. Han, P. Xu, X. Zhang, Y. Du, S. Hu, J. Wang, and X. Wang, Applied Physics Letters, 2012, 100, 046102Google Scholar
  21. 21.
    R. E. Colin, Foundations of Microwave Engineering (McGraw Hill, NewYork, 1966)Google Scholar
  22. 22.
    J. Du and H.-M. Cheng,Macromolecular Chemistry and Physics, 2012, 213, 1060Google Scholar
  23. 23.
    H. Kim, A. A. Abdala, and C. W. Macosko, Macromolecules, 2010, 43, 6515Google Scholar
  24. 24.
    J. Liang, Y. Wang, Y. Huang, Y. Ma, Z. Liu, J. Cai, C. Zhang, H. Gao, and Y. Chen, Carbon, 2009, 47, 922Google Scholar
  25. 25.
    Z. Wang, J. Luo, and G.–L. Zhao, AIP Advances, 2014, 4, 0171239Google Scholar
  26. 26.
    A. Joshi, A. Bajaj, R. Singh, P. S. Alegaonkar, K. Balasubramanian, and S. Datar, Nanotechnology, 2013, 24, 455705Google Scholar
  27. 27.
    D. V.Kosynkin, A. L. Higginbotham, A. Sinitskit, J. R. Lomeda, A. Dimiev, B. K. Price, and J. M. Tour, Nature, 2009, 458, 872Google Scholar
  28. 28.
    S. K. Marka, M. Tech. Thesis, University of Hyderabad, 2013Google Scholar
  29. 29.
    R. N. Kumar, P. Shaikshavali, V. V. S. S. Srikanth, and K. B. S. Rao, AIP Conference Proceedings, 2013, 1538, 262Google Scholar
  30. 30.
    H.-B. Zhang, Q. Yan, W.-G. Zheng, Z. He, and Z.-Z. Yu, ACS Applied Materials & Interfaces 2011, 3, 918Google Scholar
  31. 31.
    V. Eswaraiah, V. Sankaranarayanan, and S. Ramaprabhu, Macromolecular Materials and Engineering 2011, 296, 894Google Scholar
  32. 32.
    G.-S. Wang, X.-J. Zhang, Y.-Z. Wei, S. He, L. Guo, and M.-S. Cao, Journal of Materials Chemistry A, 2013, 1,7031Google Scholar
  33. 33.
    X.-J. Zhang, G.-S. Wang, Y.-Z. Wei, L. Guo, and M.-S. Cao, Journal of Materials Chemistry A, 2013, 1, 12115Google Scholar
  34. 34.
    H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang, and A.J. Heeger, Journal of Chemical Society, Chemical Communications, 1977, 578Google Scholar
  35. 35.
    S. Geetha, K.K. Satheesh, and D.C. Trivedi, Composites Science and Technology, 2005, 65, 973Google Scholar
  36. 36.
    C.Y. Lee, H.G. Song, K.S. Jang, E.J. Oh, A.J. Epstein, and J. Joo, Synthetic Metals, 1999, 102, 1346Google Scholar
  37. 37.
    P. Kathirgamanathan, Journal of Materials Chemistry, 1993, 3, 259Google Scholar
  38. 38.
    Y.K. Hong, C.Y. Lee, C.K. Jeong, J.H. Sim, K. Kim, J. Joo, M.S. Kim, J.Y. Lee, S.H. Jeong, and S.W. Byun, Current Applied Physics, 2001, 1, 439Google Scholar
  39. 39.
    P. Kathirgamanathan, Advanced Materials, 1993, 5, 281Google Scholar
  40. 40.
    X. Bai, Y. Zhai, and Y. Zhang, Journal of Physical Chemistry C, 2011, 115, 11673Google Scholar
  41. 41.
    B. Yuan, L. Yu, L. Sheng, K An, and X. Zhao, Journal of Physics D: Applied Physics, 2012, 45, 235108Google Scholar
  42. 42.
    J. H. Du, L. Zhao,Y. Zeng, L. L. Zhang, F. Li, P. F. Liu, and C. Liu, Carbon, 2011,49, 1094Google Scholar
  43. 43.
    H. Yu, T. Wang, B. Wen, M. Lu, Z. Xu, C. Zhu, Y. Chen, X. Xue, C. Sun, and M. Cao, Journal of Materials Chemistry, 2012, 22, 21679Google Scholar
  44. 44.
    P. Liu and Y. Huang, Journal of Polymer Research, 2014, 21, 430Google Scholar
  45. 45.
    D.-X. Yan, P.-G. Ren, H. Pang, Q. Fu, M.-B. Yang, and Z.-M. Li, Journal of Materials Chemistry, 2012, 22, 18772Google Scholar
  46. 46.
    J. Ling, W. Zhai, W. Feng, B. Shen, J. Zhang, and W. Zheng, ACS Applied Materials & Interfaces, 2013, 5, 2677Google Scholar
  47. 47.
    T. Chen, F. Deng, J. Zhu, C. Chen, G. Sun, S. Ma, and X. Yang, Journal of Materials Chemistry, 2012, 22, 15190Google Scholar
  48. 48.
    X. Sun, J. He, G. Li, J. Tang, T. Wang, Y. Guo, and H. Xue, Journal of Materials Chemistry C, 2013, 1, 765Google Scholar
  49. 49.
    X. Li, H. Yi, J. Zhang, J. Feng, F. Li, D. Xue, H. Zhang, Y. Peng, and N. J. Mellors, Journal of Nanoparticle Research, 2013, 15, 1472Google Scholar
  50. 50.
    G. Wang, Z. Gao, G. Wan, S. Lin, P. Yang, and Y. Qin, Nano Research 2014, 7(5), 704Google Scholar
  51. 51.
    M. Fu, Q. Jiao, Y. Zhao, and H. Lia, Journal of Materials Chemistry A, 2014, 2, 735Google Scholar
  52. 52.
    W.-L. Song, M.-S. Cao, M.-M. Lu, J. Liu, J. Yuan, and L.-Z. Fan, Journal of Materials Chemistry C, 2013, 1, 1846Google Scholar
  53. 53.
    W.-L. Song, M.-S. Cao, M.-M. Lu, J. Yang, H.-F. Ju, Z.-L. Hou, J. Liu, J. Yuan, and L.-Z. Fan, Nanotechnology, 2013, 24, 115708Google Scholar
  54. 54.
    K. Singh, A. Ohlan, V.H. Pham, R. Balasubramaniyan, S. Varshney, J. Jang, S.H. Hur, W.M. Choi, M. Kumar, S.K. Dhawan, B.-S. Kong, and J.S. Chung, Nanoscale, 2013, 5, 2411Google Scholar
  55. 55.
    A.P. Singh, M. Mishra, P. Sambyal, B.K. Gupta, B.P. Singh, A. Chandra, and S.K. Dhawan, Journal of Materials Chemistry A, 2014, 2, 3581Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.School of Engineering Sciences and Technology (SEST)University of HyderabadHyderabadIndia
  2. 2.Centre for Advanced Studies in Electronics Science and TechnologySchool of Physics, University of HyderabadHyderabadIndia

Personalised recommendations