Advertisement

Development of Biosensors from Polymer Graphene Composites

  • Ramendra Sundar DeyEmail author
Chapter
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)

Abstract

Graphene has been considered as excellent two dimensional support in recent-times for next-generation graphene-polymer composites towards the development of biosensors. The remarkable properties of polymer and graphene with respect to electrical, mechanical, optical and structural aspect offers an ideal composite support for the development of biosensor. The frontiers of this composites technology is by combining of the polymer and graphene through synergy to achieve the goal of enhanced performance of biosensors with good efficiency and cost effectiveness. Graphene combined with polymer enhances the performance of biosensors in terms of sensitivity, selectivity, response time, and multiplexing capability of biosensors for clinical diagnostics. In this chapter, various methods have been provided to produce the polymer-based graphene composite materials and also discussed the importance of the composite materials to the development of biosensors for clinically important analytes, DNAs, aptamers and immunosensors .

Graphical Abstract

Keywords

Graphene Biosensors Polymer Composites Electrochemistry Metabolites DNA Aptamers Immunosensors 

Abbreviations

Au

Gold

AuNP

Gold nanoparticle(s)

CEA

Carcinobryonic antigen

CHIT

Chitosan

ChOx

Cholesterol oxidase

CNT

Carbon nanotube(s)

Cyt c

Cytochrome C

DET

Direct electron transfer

DMSO

Dimethyl sulfoxide

ECL

Electrochemiluminescence

FET

Field effect transistor

fM

Femtomolar

GCE

Glassy carbon electrode

GO

Graphene oxide

GOx

Glucose oxidase

h

Hour(s)

H2O2

Hydrogen peroxide

HRP

Horseradish peroxidase

L

Liter(s)

LbL

Layer-by-layer

min

Minute(s)

mol

Mole(s)

MWCNT

Multi-walled carbon nanotube

Nf

Nafion

nM

Nanomolar

PANi

polyaniline

PAAm

Polyalylamine

PAAc

Polyacrylic acid

PBS

Phosphate buffer solution

PDDA

Poly(diallyldimethylammonium chloride)

PEDOT

Poly-3,4-ethylene dioxythiophene

pM

Picomolar

PPy

Polypyrrole

PSS

Polystrynesulfonate

PVA

Polyvinyl alcohol

rGO

Reduced graphene oxide

rt

Room temperature

RTIL

Room temperature ionic liquid

s

Second(s)

SCE

Saturated calomel electrode

SPCE

Screen-printed carbon electrode

SPE

Screen-printed electrode

References

  1. 1.
    Wenrong Y, Kyle RR, Simon PR, Pall T, Gooding JJ, Filip B (2010) Angew Chem Int Ed 49: 2114Google Scholar
  2. 2.
    Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Polymer 52: 5Google Scholar
  3. 3.
    Menaa F (2013) J Mol Imaging Dynam 2:e103. doi:  10.4172/2155-9937.1000e103
  4. 4.
    Menaa F (2013) Pharmaceut Anal Acta. 5:e161. doi:  10.4172/2153-2435.1000e161
  5. 5.
    Shan C, Yang H, Song J, Han D, Ivaska A, Niu L (2009) Anal Chem 81: 2378Google Scholar
  6. 6.
    Kang X, Wang J, Wu H, Aksay I A, Liu J, Lin Y (2009) Biosens Bioelectron 25: 901Google Scholar
  7. 7.
    Si Y, Samulski ET (2008) Chem Mater 20: 6792Google Scholar
  8. 8.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306: 666Google Scholar
  9. 9.
    Geim AK, Novoselov KS (2007) Nat Mater 6: 183Google Scholar
  10. 10.
    Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A (2009) Angew Chem Int Ed 48: 7752Google Scholar
  11. 11.
    Dey RS, Hajra S, Sahu RK, Raj CR, Panigrahi MK (2012) Chem Commun 48: 1787Google Scholar
  12. 12.
    Menaa F, Abdelghani A, Menaa B, (2014) J Tissue Eng Regen Med. doi:  10.1002/term.1910
  13. 13.
    Geim AK, Novoselov KS (2007) Nat Mater 6:183Google Scholar
  14. 14.
    Steurer P, Wissert R, Thomann R, Mülhaupt R (2009) Macromol Rapid Commun 30:316Google Scholar
  15. 15.
    Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, Adamson DH, Schniepp HC, Chen X, Ruoff RS, Nguyen ST, Aksay IA, Prud’homme RK, Brinson LC (2008) Nat Nanotechnol 3: 327Google Scholar
  16. 16.
    Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, et al. (2006) Nature 442: 282Google Scholar
  17. 17.
    Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Alonso, MH, Piner RD, et al. (2008) Nat Nanotechnol 3: 327Google Scholar
  18. 18.
    Lee YR, Raghu AV, Jeong HM, Kim BK (2009) Macromol Chem Phys 210: 1247Google Scholar
  19. 19.
    Xu Y, Wang Y, Jiajie L, Huang Y, Ma Y, Wan X, et al. (2009) Nano Res 2: 343Google Scholar
  20. 20.
    Quan H, Zhang B, Zhao Q, Yuen RKK, Li RKY (2009) Compos Pt A 40: 1506Google Scholar
  21. 21.
    Liang J, Huang Y, Zhang L, Wang Y, Ma Y, Guo T, et al. (2009) Adv Funct Mater 19: 2297Google Scholar
  22. 22.
    Balog R, Jørgensen B, Nilsson L, Andersen M, Rienks E, Bianchi M, et al. (2010) Nat Mater 9: 315Google Scholar
  23. 23.
    Ventura G, Martelli V (2009) Cryogenics 49: 735Google Scholar
  24. 24.
    Woo MW, Wong P, Tang Y, Triacca V, Gloor PE, Hrymak AN, et al. (1995) Polym Eng Sci 35: 151Google Scholar
  25. 25.
    Yuen SM, Ma CCM, Chiang CL, Chang JA, Huang SW, Chen SC, et al. (2007) Compos Pt A 38: 2527Google Scholar
  26. 26.
    Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach, EA, et al. (2006) Nature 442: 282Google Scholar
  27. 27.
    Quan H, Zhang B, Zhao Q, Yuen RKK, Li RKY (2009) Compos Pt A 40: 1506Google Scholar
  28. 28.
    Hong WJ, Xu YX, Lu GW, Li C, Shi GQ (2008) Electrochem Commun 10: 1555Google Scholar
  29. 29.
    Yao J, Shen XP, Wang B, Liu HK, Wang GX (2009) Electrochem Commun 11:1849Google Scholar
  30. 30.
    Choi DW, Wang DH, Viswanathan VV, Bae IT, Wang W, Nie ZM, Zhang JG, Graff GL, Liu J, Yang ZG, Duong T (2010) Electrochem Commun 12: 378Google Scholar
  31. 31.
    Wang HL, Hao QL, Yang, X J, Lu LD, Wang, X (2009) Electrochem Commun 11: 1158Google Scholar
  32. 32.
    Wu Q, Xu YX, Yao ZY, Liu AR, Shi GQ (2010) ACS Nano 4: 1963Google Scholar
  33. 33.
    Wu JF, Xu MQ, Zhao GC (2010) Electrochem Commun 12: 175Google Scholar
  34. 34.
    Hong WJ, Bai H, Xu YX, Yao ZY, Gu ZZ, Shi GQ (2010) J Phys Chem C 114: 1822Google Scholar
  35. 35.
    Moniruzzaman M, Winey KI, (2006) Macromolecules 39:5194Google Scholar
  36. 36.
    Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) Chem Soc Rev 39:228Google Scholar
  37. 37.
    Suk JW, Piner RD, An J, Ruoff RS (2010) ACS Nano 4:6557 doi:  10.1021/nnl101781v
  38. 38.
    Gómez-Navarro C, Burghard M, Kern K (2008) Nano Lett 8:2045Google Scholar
  39. 39.
    Bunnell LR (1993) Battelle Memorial Institute 5186919Google Scholar
  40. 40.
    Chen G, Zhao W, editors (2009) Nano- and biocomposites CRCPress, 79Google Scholar
  41. 41.
    Zheng W, Wong S-C (2003) Compos Sci Technol 63:225Google Scholar
  42. 42.
    Thévenot DR, Toth K, Durst RA, Wilson GS, Pure Appl. Chem. 71 (1999) 2333Google Scholar
  43. 43.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666Google Scholar
  44. 44.
    Pumera M (2009) Chem Rec 9:211Google Scholar
  45. 45.
    Wu S, He Q, Tan C, Wang Y, Zhang H (2013) Small 9:1160Google Scholar
  46. 46.
    Liu Y, Dong X, Chen P (2012) Chem Soc Rev. 41:2283–2307Google Scholar
  47. 47.
    Fan Y, Liu J, Yang C, Yu M, Liu P (2011) Sens. Actuators B Chem 157:669Google Scholar
  48. 48.
    Hummers W, Offeman R (1958) J. Am. Chem. Soc. 80: 1339Google Scholar
  49. 49.
    Cristina V, Pablo J, Edgar, Ana M B, Wolfgang KM (2011) J Phys Chem C, 115: 10468Google Scholar
  50. 50.
    Chen G-L, Shau S-M, Juang T-Y, Lee R-H, Chen C-P, Suen S-Y, Jeng, R-J, (2011) Langmuir, 27: 14563Google Scholar
  51. 51.
    Yang T, Meng L, Wang X, Wang L, Jiao K, (2013) ACS Appl Mater Interfaces, 5: 10889Google Scholar
  52. 52.
    Nipapan R, Rangkupan R, Rodthongkum N, Chailapakul O (2014) Biosens.Bioelectron.52:13Google Scholar
  53. 53.
    Jiménez P, Castell P, Sainz R, Ansón A, Martínez MT, Benito AM, Maser WK (2010) J Phys Chem B 114: 1579Google Scholar
  54. 54.
    Liu P-Z, Hu X-W, Mao C-J, Niu H-L, Song J-M, Jin B-K, Zhang S-Y, (2013) Electrochim. Acta 113: 176Google Scholar
  55. 55.
    Li J, Liua S, Yu J, Lian W, Cui M, Xu W, Huang J, (2013) Sens. Actuators B 188: 99Google Scholar
  56. 56.
    Zhang K, Zhang LL, Zhao XS, Wu J, (2010) Chem. Mat. 22: 1392Google Scholar
  57. 57.
    Xu Q, Gu S-X, Jin L, Zhou Y, Yang Z, Wang W, Hu X, (2014) Sens Actuators B 190: 562Google Scholar
  58. 58.
    Du M, Yang T, Li X, Jiao K, (2012) Talanta 88: 439Google Scholar
  59. 59.
    Choi BG, Park HS, Park TJ, Yang MH, Kim JS, Jang SY, Heo NS, Lee SY, Kong J, Hong WH, (2010) ACS Nano 4: 2910Google Scholar
  60. 60.
    Xin Y, Fu-bing X, Hong-wei L, Feng W, Di-zhao C, Zhao-yang W, (2013) Electrochim. Acta 109: 750Google Scholar
  61. 61.
    Liu Y, Wang G, Li C, Zhou Q, Wang M, Yang L, (2014) Mat. Sci. Eng. C 35 253Google Scholar
  62. 62.
    Dey RS, Raj CR (2010) J Phy. Chem. C 114: 21427Google Scholar
  63. 63.
    Dey RS, Raj CR (2013) ACS Appl. Mater. Interfaces5: 4791Google Scholar
  64. 64.
    Dey RS, Raj CR (2013) RSC Adv. 3: 25858Google Scholar
  65. 65.
    Yang L, Wang G, Liu Y (2013) Anal. Biochem. 437: 144Google Scholar
  66. 66.
    Ni Y, Wang P, Song H, Lin X, Kokot S, (2014) Anal Chim Acta 821: 34Google Scholar
  67. 67.
    Hui J, Cui J, Xu G, Adeloju SB, Wu Y, (2013) Mater. Lett.108: 88Google Scholar
  68. 68.
    Zhang S, Shao Y, Liao H, Engelhard MH, Yin G, Lin Y (2011) ACS Nano, 5: 1785Google Scholar
  69. 69.
    Song Y, Liu H, Wan L, Wang Y, Hou H, Wang L, (2013) Electroanalysis, 25: 1400Google Scholar
  70. 70.
    Liu K, Zhang J, Yang G, Wang C, Zhu J-J, (2010) Electrochem. Commun. 12: 402–405Google Scholar
  71. 71.
    Yu Y, Chen Z, He S, Zhang B, Li X, Yao M (2014) Biosens. Bioelectron. 52: 147Google Scholar
  72. 72.
    Ma J, Cai P, Qi W, Kong D, Wang H, (2013) Colloids Surfaces A: Physicochem Eng Aspects 426: 6Google Scholar
  73. 73.
    Park S, Dikin DA, Nguyen SBT, Ruoff RS, (2009) J Phys Chem C, lett, 113:15801Google Scholar
  74. 74.
    Zhang Z, Liu S, Shi Y, Zhang Y, Peacock D, Yan F, Wang P, He L, Feng X, Fang S (2014) J Mater Chem B, 2: 1530Google Scholar
  75. 75.
    Gao Y, Li J, Yang X, Xiang Q, Wang K, (2014) Electroanalysis, 26: 382.Google Scholar
  76. 76.
    Wang G-X, Qian Y, Cao X-X, Xia X-H, (2012) Electrochem Commun 20:1Google Scholar
  77. 77.
    Xu H, Suslick KS, (2011) J Am Chem Soc, 133: 9148Google Scholar
  78. 78.
    Chen H, Gao Z, Cui Y, Chen G, Tang D, (2013) Biosens. Bioelectron. 44: 108Google Scholar
  79. 79.
    Park JW, Park SJ, Kwon OS, Lee C, Jang J, (2014) Anal Chem, 86: 1822.Google Scholar
  80. 80.
    Kwon OS, Park SJ, Hong J-Y, Han A-R, Lee JS, Lee JS, Oh JH, Jang J, (2012) ACS Nano, 6: 1486Google Scholar
  81. 81.
    Zhang J, Lei J, Pan R, Xue Y, Ju H, (2010) Biosens. Bioelectron. 26: 371Google Scholar
  82. 82.
    Tourillon G (1986) In Handbook of Conducting Polymers, Skotheim, TA, Ed, Marcel Dekker: New York, Vol 1, pp 293-350Google Scholar
  83. 83.
    Chandler GK, Pletcher D (1985) In Electrochemistry, The Royal Society of Chemistry: London, Vol 10, pp 117-150Google Scholar
  84. 84.
    Wei Y, Chan C-C, Tian J, Jang G-W, Hsueh KF (1991) Chem. Mater. 3: 888Google Scholar
  85. 85.
    Bo Y, Yang H, Hu Y, Yao T, Huang S, (2011) Electrochim. Acta 56: 2676Google Scholar
  86. 86.
    Liang L, Liu J, Windisch C, Exarhos G, Lin Y, (2002) Angew Chem Int Ed 41: 3665Google Scholar
  87. 87.
    Devia R, Relhan S, Pundir CS, (2013) Sens. Actuators B 186: 17Google Scholar
  88. 88.
    Radhapyari K, Kotoky P, Das MR, Khan R, (2013) Talanta 111:47.Google Scholar
  89. 89.
    Feng X-M, Li R-M, Ma Y-W, Chen R-F, Shi N-E, Fan Q-L, Huang W, (2011) Adv Funct Mater.21: 2989Google Scholar
  90. 90.
    Yang Y, Asiri AM, Du D, Lin Y, (2014) Analyst 13: 3055Google Scholar
  91. 91.
    Alwarappan S, Liu C, Kumar A, Li C-Z, (2010) J Phys Chem C, 114:12920Google Scholar
  92. 92.
    Wen W, Bao T, Yang J, Zhang M-Z, Chen W, Xiong H-Y, Zhang X-H, Zhao Y-D, Wang S-F, (2014) Sens. Actuators B 191: 695Google Scholar
  93. 93.
    Wisitsoraat A, Pakapongpan S, Sriprachuabwong C, Phokharatkul D, Sritongkham P, Lomas T, Tuantranont A, (2013) J. Electroanal.Chem. 704: 208Google Scholar
  94. 94.
    Su X, Ren J, Meng X, Rena X, Tang F (2013) Analyst 138: 1459Google Scholar
  95. 95.
    Das TK, Prusty S (2013) Polymer-Plastics Technol. Eng. 52: 319Google Scholar
  96. 96.
    Lei W, Si W, Xu Y, Gu Z, Hao Q, (2014) Microchim Acta 181:7072Google Scholar
  97. 97.
    Dey RS, Bera RK, Raj CR (2013) Anal Bioanal Chem 405:3431Google Scholar
  98. 98.
    Ray PC, (2010) Chem. Rev. 110: 5332Google Scholar
  99. 99.
    Gooding JJ, Wibowo R, Liu JQ, Yang WR, Losic D, Orbons S, Mearns FJ, Shapter JG, Hibbert DB (2003) J Am Chem Soc 125:9006Google Scholar
  100. 100.
    Pulcu GS, Elmore BL, Arciero DM, Hooper AB, Elliott SJ (2007) J Am Chem Soc 129:1838Google Scholar
  101. 101.
    Wang JX, Li MX, Shi ZJ, Li NQ, Gu ZN (2002) Anal. Chem. 74:1993Google Scholar
  102. 102.
    Wang J (2008) Chem. Rev. 108:814Google Scholar
  103. 103.
    Heller A, Feldman B (2010) Acc. Chem. Res. 43:963Google Scholar
  104. 104.
    Kong F-Y, Gu S-X, Li W-W, Chen T-T, Xu Q, Wang W, (2014) Biosens. Bioelectron. 56: 77Google Scholar
  105. 105.
    Nguyen HB, Nguyen VC, Nguyen VT, Ngo TTT, Nguyen NT, Dang TT H, Tran DL, Do PQ, Nguyen XN, Nguyen XP, Phan HK, Phan NM, (2012) Adv Nat Sci: Nanosci Nanotechnol 3:025011Google Scholar
  106. 106.
    Jia L, Liu J, Wang H (2013) Electrochim. Acta 111: 411Google Scholar
  107. 107.
    Song Y, Liu H, Wang Y, Wang L, (2013) Electrochim. Acta 93: 17Google Scholar
  108. 108.
    Choi BG, Im J, Kim HS, Park HS, (2011) Electrochim. Acta 56: 9721Google Scholar
  109. 109.
    Zeng G, Xing Y, Gao J, Wang Z, Zhang X (2010) Langmuir, 26: 15022Google Scholar
  110. 110.
    Chen H-C, Tsaid R-Y, Chen Y-H, Lee R-S, Hua M-Y (2013) Anal. Chim. Acta 792:101Google Scholar
  111. 111.
    Causse E, Pradelles A, Dirat B, Negre-Salvayre A, Salvayre R, Couderc F, (2007) Electrophoresis 28: 381Google Scholar
  112. 112.
    Yang Y, Asiri AM, Du D, Lin Y (2014) Analyst, 139: 3055Google Scholar
  113. 113.
    Hu X-W, Mao C-J, Song J-M, Niu H-L, Zhang S-Y, Huang H-p, (2013) Biosens. Bioelectron. 41: 372Google Scholar
  114. 114.
    Ohshima H, Tatemichi M, Sawa T (2003) Arch Biochem Biophys 417: 3Google Scholar
  115. 115.
    Foreman J, Demidchik V, Bothwell J H F, Mylona P, Miedema H, Torres M A, Linstead P, Costa S, Brownlee C, Jones J D G, Davies J M, Dolan L (2003) Nature 422: 442Google Scholar
  116. 116.
    Vione D, Maurino V, Minero C, Borghesi D, LucchiariM, Pelizzetti E (2003) Environ Sci Technol, 37: 4635Google Scholar
  117. 117.
    Bai J, Jiang X (2013) Anal Chem, 85: 8095Google Scholar
  118. 118.
    Kafi AKM, Ahmadalinezhad A, Wang J, Thomas DF, Chen A (2010) Biosens Bioelectron, 25: 2458Google Scholar
  119. 119.
    Sun X, Guo S, Liu Y, Sun S (2012) Nano Lett, 12: 4859Google Scholar
  120. 120.
    Wang Y, Yang X, Bai J, Jiang X, Fan G (2013) Biosens Bioelectron 43: 180Google Scholar
  121. 121.
    Feng Q, Liu K, Fu J, Zhang Y, Zheng Z, Wang C, Du Y, Ye W, (2012) Electrochim. Acta 60: 304Google Scholar
  122. 122.
    Guo C, Sun H, Zhao XS, (2012) Sens. Actuators B 164: 82Google Scholar
  123. 123.
    Odenthal KJ, Gooding JJ (2007) Analyst 132:603Google Scholar
  124. 124.
    Wang J (2002) Anal Chim Acta 469:63Google Scholar
  125. 125.
    Sassolas A, Leca-Bouvier BD, Blum LJ (2008) Chem. Rev. 108:109Google Scholar
  126. 126.
    Deng K, Xiang Y, Zhang L, Chen Q, Fu W, (2013) Anal. Chim. Acta 759: 61Google Scholar
  127. 127.
    Loureiro R, D’Amore, P (2005) Cytokine Growth Factor Rev. 16: 77Google Scholar
  128. 128.
    Foekens JA, Peters HA, Grebenchtchikov N, Look MP, Gelder ME M-V, G-Moespot A, Kwast THVD, Sweep CGJ, Klijn JGM (2001) Cancer Res. 15: 5407Google Scholar
  129. 129.
    Saha K, Agasti S, Kim C, Li X, Rotello V (2012) Chem. Rev. 112: 2739Google Scholar
  130. 130.
    Liu K, Zhang J-J, Wang C, Zhu J-J (2011) Biosens. Bioelectron. 26: 3627Google Scholar
  131. 131.
    Wu Y, Xue P, Hui KM, Yuejun K, (2014) Biosens. Bioelectron. 52: 180Google Scholar
  132. 132.
    Ho HA, Najari A, Leclerc M, (2008) Acc Chem Res 41: 168Google Scholar
  133. 133.
    Song Y, Wei W, Qu X (2011) Adv. Mater. 23: 4215Google Scholar
  134. 134.
    Lim SY, Ahn J, Lee JS, Kim M-G, Park CB, (2012) small, 8: 1994Google Scholar
  135. 135.
    Zhao Y, Hu X, Chen G, Zhang X, Tan Z, Chen J, Ruoff RS, Zhu Y, Lu Y (2013) Phys Chem Chem Phys 15: 17118Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of ChemistryTechnical University of DenmarkKgs LyngbyDenmark

Personalised recommendations