Graphene Filled Polymers for Vapor/Gas Sensor Applications

  • Tran Thanh TungEmail author
  • Mickael Castro
  • Jean Francois Feller
  • Tae Young Kim
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)


With their unique and excellent properties such as high carrier mobility and high surface area, graphene-base materials have shown great promise as efficient sensing materials for highly sensitive and low noise sensors. Graphene offers some important advantages over other carbon-based materials such as carbon nanotubes (CNTs), which includes enhanced sensitivity and low inherent electrical noise. These merits mainly comes from their structural features, as it is composed of all surface carbon atoms with large and flat geometry enabling high sensitivity and low contact resistance. Moreover, their surface can be functionalized with organic molecules (e.g., polymers, nanocrystalline , bio-molecular), and surface molecules on graphene surface can also be used as gas/vapor sensing materials that promote the sensing capability of overall composites. This has sparked interests in the development of highly sensitive and selective gas/vapor sensors based on graphene-based materials and their polymer composites. In this review, recent progress on graphene and its composites will be discussed in the context of their use in sensors. It mainly focuses on how engineering graphene with other functional molecules can affect their ability to detect a number of different gas/vapor. It also emphasizes achievements made with graphene-filled polymer composites for gas/vapor sensor applications.


Volatile organic compound Gas Sensing Hybrid composites 


  1. 1.
    J. Polleux, A. Gurlo, N. Barsan, U. Weimar, M. Antonietti, M. Niederberger. Angew. Chem. 2006, 118, 267.Google Scholar
  2. 2.
    C. K. Ho, A. Robinson, D. R. Miller, M. J. Davis. Sensors 2005, 5, 4–37.Google Scholar
  3. 3.
    S. Su, W. Wu, J. Gao, J. Lu, C. Fan. J. Mater. Chem. 2012, 22, 18101–18110.Google Scholar
  4. 4.
    I. A. Casalinuovo, D. D. Pierro, M. Coletta, P. D. Francesco. Sensors 2006, 6, 1428.Google Scholar
  5. 5.
    P. Hu, J. Zhang, L. Li, Z. Wang, W. O’Neill, P. Estrela. Sensors 2010, 10, 5133.Google Scholar
  6. 6.
    O. S. Wenger. Chem. Rev.113, 2013, 3685–3733.Google Scholar
  7. 7.
    H. J. Dai. 2001 Carbon Nanotubes (Springer: Berlin).Google Scholar
  8. 8.
    Y. P. Sun, K. Fu, Y. Lin, W. Huang. Acc. Chem. Res. 2002, 35, 1096–104.Google Scholar
  9. 9.
    J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, H. Dai. Science 2000, 287, 622–625.Google Scholar
  10. 10.
    J. Li, Y. Lu, Q. Ye, M. Cinke, J. Han, M. Meyyappan. Nano lett. 2003, 3, 929–933.Google Scholar
  11. 11.
    A. Modi, N. Koratkar, E. Lass, B. Wei, P. M. Ajayan. Nature 2003, 424, 171–174.Google Scholar
  12. 12.
    J. F. Feller, J. Lu, K. Zhang, B. Kumar, M. Castro, N. Gatt, H. J Choi. J. Mater. Chem. 2011, 21, 4142–4149.Google Scholar
  13. 13.
    B. Kumar, M. Castro, J. F. Feller. J. Mater. Chem. 2012, 22, 10656–10664.Google Scholar
  14. 14.
    J.C. Bonner. Expert Rev Respir Med. 2011, 5, 779–787.Google Scholar
  15. 15.
    K. Kostarelos. Nat. Biotech. 2008, 26, 774–776.Google Scholar
  16. 16.
    K. Donaldson, C. A. Poland. Nat. Nanotech. 2009, 4, 708–710.Google Scholar
  17. 17.
    H. C. Nerl, C. Cheng, A. E. Goode, S. D. Bergin, B. Lich, M. Gass, and A. E Porter. Nanomedicine 2011 6, 849–865.Google Scholar
  18. 18.
    C. Lee, X. Wei, J. W. Kysar, J. Hone. Science 2008, 321, 385–388.Google Scholar
  19. 19.
    A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau. Nano Lett. 2008, 8, 902–907.Google Scholar
  20. 20.
    K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. L. Stormer. Solid State Commun. 2008, 146, 351–355.Google Scholar
  21. 21.
    H. G. Park, S. Hwang, J. Lim, D. H. Kim, I. S. Song, J. H. Kim, D. H. Woo, S. Lee, S. C. Jun. Jpn. J. Appl. Phys. 2012, 51, 045101.Google Scholar
  22. 22.
    J. Z. Zhang. J. Phys. Chem. Lett. 2012, 3, 1806−1807.Google Scholar
  23. 23.
    Q. He, S. Wu, Z. Yin, H. Zhang. Chem. Sci. 2012, 3, 1764.Google Scholar
  24. 24.
    S. Mao, G. Lu. J. Chen. J. Mater. Chem. A 2014, 2, 5573.Google Scholar
  25. 25.
    W. Yuan, G. Shi. J. Mater. Chem. A 2013, 1,10078.Google Scholar
  26. 26.
    F. Yavari, N. Koratkar. J. Phys. Chem. Lett. 2012, 3, 1746−1753.Google Scholar
  27. 27.
    Y. Zhang, L. Zhang, C. Zhou. Acc Chem Res 2013, 46, 2329–2339.Google Scholar
  28. 28.
    G. H. Lu, S. Park, K. H. Yu, R. S. Ruoff, L. E. Ocola, D. Rosenmann, J. H. Chen. ACS Nano 2011, 5, 1154–1164.Google Scholar
  29. 29.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang,Y. Zhang, S. V. Dubonos, et al. Science 2004, 306, 666–669.Google Scholar
  30. 30.
    K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, et al. Nature 2009, 457, 706–710.Google Scholar
  31. 31.
    C. Berger, Z. M. Song, X. B. Li, X. S. Wu, N. Brown, C. Naud, et al. Science 2006, 312, 1191–1198.Google Scholar
  32. 32.
    S. Park, R. S. Ruoff. Nat Nanotechnol. 2009, 4, 217–224.Google Scholar
  33. 33.
    S. Gilje, S. Han, M. S. Wang, K. L. Wang, R. B. Kaner. Nano Lett. 2007, 7, 3394–3398.Google Scholar
  34. 34.
    W. Gao, L. B. Alemary, L. Gi, P. M. Ajayan. Nature Chem. 2009, 1, 403–408.Google Scholar
  35. 35.
    F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, K. S. Novoselov. Nat Mater. 2007, 6, 652–655.Google Scholar
  36. 36.
    S. Rumyantsev, G. Liu, M. S. Shur, R. A. Potyrailo, A. A. Balandin. Nano Lett. 2012, 12, 2294−2298.Google Scholar
  37. 37.
    R. K. Joshi, H. Gomez, F. Alvi, A. Kumar. J Phys Chem C 2010, 114, 6610–6613.Google Scholar
  38. 38.
    J. Hass, W. A. de Heer and E. H. Conrad. J. Phys.: Condens. Matter. 2008, 20, 323202.Google Scholar
  39. 39.
    R. Pearce, J. Eriksson, T. Iakimov, L. Hultman, A. L. Spetz, R. Yakimova. ACS Nano. 2013, 7, 4647–4656.Google Scholar
  40. 40.
    Iezhokin, P. Offermans, S. H. Brongersma, A. J. M. Giesbers, C. F. J. Flipse. Appl. Phys. Lett. 2013, 103, 053514.Google Scholar
  41. 41.
    X. S. Li, W. W. Cai, A. Jinho, K. Seyoung, N. Junghyo, D. X. Yang, R. Piner, A. Velamakanni, J. Inhwa, E. Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruoff. Science 2009, 324, 1312–1314.Google Scholar
  42. 42.
    C. W. Chen, S. C. Hung, M. D. Yang, C. W. Yeh, C. H. Wu, G. C. Chi, F. Ren, S. Pearton. J. Appl. Phys. Lett. 2011, 99, 243502.Google Scholar
  43. 43.
    A. Cagliani, D. M. Angus Mackenzie, L. K. Tschammer, F. Pizzocchero, K. Almdal, P. Boggild. Nano Res. 2014, 7, 743–754.Google Scholar
  44. 44.
    F. Yavari, Z. Chen, A. V. Thomas, W. Ren, H. M. Cheng, N. Koratkar. Sci Rep. 2011, 1, 166.Google Scholar
  45. 45.
    S. Park, R. S. Ruoff. Nat Nanotechnol. 2009, 4, 217–224.Google Scholar
  46. 46.
    S. Gilje, S. Han, M. S. Wang, K. L. Wang, R. B. Kaner. Nano Lett. 2007, 7, 3394–3398.Google Scholar
  47. 47.
    W. Gao, L. B. Alemary, L. Gi, P. M. Ajayan. Nature Chem. 2009, 1, 403–408.Google Scholar
  48. 48.
    M. D. Stoller, S. Park, Y. Zhu, J. An, R. S. Ruoff. Nano Lett. 2008, 8, 3498–3502.Google Scholar
  49. 49.
    K. K. Sadasivuni, D. Ponnamma, S. Thomas, Y. Grohens. Prog in Poly Sci. 2014, 39, 749–780.Google Scholar
  50. 50.
    J. T. Robinson, F. K. Perkins, E. S. Snow, Z. Wei, P. E. Sheehan. Nano lett. 2008, 8, 3137–3140.Google Scholar
  51. 51.
    S. Prezioso, F. Perrozzi, L. Giancaterini, C. Cantalini, E. Treossi, V. Palermo, M. Nardone, S. Santucci, L. Ottaviano. J . Phys. Chem. C, 2013, 117, 10683–10690.Google Scholar
  52. 52.
    J. D. Fowler, M. J. Allen, V. C. Tung, Y. Yang, R. B. Kaner, B. H. Weiller. ACS Nano 2009, 3, 301–306.Google Scholar
  53. 53.
    V. Dua, S. P. Surwade, S. Ammu, S. R. Agnihotra, S. Jain, K. E. Roberts, S. Park, R. S. Ruoff, S. K. Manohar. Angew. Chem. Int. Ed. 2010, 49, 2154−2157.Google Scholar
  54. 54.
    H. Song, L. Zhang, C. He, Y. Qu, Y. Tian, Y. Lv. J Mater Chem 2011, 21, 5972–5977.Google Scholar
  55. 55.
    A. Zöpfl, M. M. Lemberger, M. König, G. Ruhl,  F. M. Matysik, T. Hirsch. Faraday Discuss., 2014, DOI:  10.1039/C4FD00086B.
  56. 56.
    D. Ponnamma, K. K. Sadasivuni, M. Strankowski, Q. Guo, S. Thomas. Soft Matter, 2013, 9, 10343.Google Scholar
  57. 57.
    M. Gautam, A. H. Jayatissa. Solid State Electron 2012, 78,159–165.Google Scholar
  58. 58.
    H. Vedala, D. C. Sorescu, G. P. Kotchey, A. Star. Nano Lett. 2011, 11, 2342–2347.Google Scholar
  59. 59.
    J. L. Johnson, A. Behnam, S. J. Pearton and A. Ural. Adv. Mater., 2010, 22, 4877.Google Scholar
  60. 60.
    T. T. Tung, M. Castro, T. Y. Kim, K. S. Suh, J. F. Feller. Anal Bioanal Chem 2014 406, 3995–4004.Google Scholar
  61. 61.
    A. Gutes, B. Hsia, A. Sussman, W. Mickelson, A. Zettl, C. Carraro, R. Maboudian. Nanoscale, 2012, 4, 438–440.Google Scholar
  62. 62.
    V. V. Quang, N. V. Dung, N. S. Trong, N. D. Hoa, N. V. Duy, N. V. Hieu. Appl. Phys. Lett. 2014, 105, 013107.Google Scholar
  63. 63.
    L. Zhou, F. Shen, X. Tian, D. Wang, T. Zhang, W. Chen. Nanoscale 2013, 5, 1564.Google Scholar
  64. 64.
    Y. Wang, L. Zhang, N. Hu, Y. Wang, Y. Zhang, Z. Zhou, Y. Liu, S. Shen, C. Peng. Naoscale Research Letters 2014, 9:251.Google Scholar
  65. 65.
    P. A. Russo, N. Donato, S. G. Leonardi, S. Baek, D. E. Conte, G. Neri, N. Pinna. Angew. Chem., Int. Ed., 2012, 51, 11053.Google Scholar
  66. 66.
    W. Yuan, A. Liu, L. Huang, C. Li, G. Shi. Adv. Mater. 2013, 25, 766–771.Google Scholar
  67. 67.
    Y. Lu, B. R. Goldsmith, N. J. Kybert, A. T. C. Johnson. Appl. Phys. Lett. 2010, 97, 083107.Google Scholar
  68. 68.
    J. Janata,M. Josowicz. Nat. Mater. 2003, 2, 19.Google Scholar
  69. 69.
    H. Bai, G. Shi. Sensors 2007, 7, 267.Google Scholar
  70. 70.
    S. Virji, J. X. Huang, R. B. Kaner, B. H. Weiller. Nano Lett. 2004, 4, 491.Google Scholar
  71. 71.
    P. Hui, Z. Lijuan, C. Soeller, J. Travas-Sejdic. Biomaterials 2009, 30, 2132.Google Scholar
  72. 72.
    K. Arshak, V. Velusamy, O. Korostynska, K. Oliwa-Stasiak, C. Adley. IEEE Sensors J. 2005, 9, 1942.Google Scholar
  73. 73.
    J. Jang, M. Chang, H. Yoon. Adv. Mater. 2005, 17, 1616.Google Scholar
  74. 74.
    H. Yoon, M. Chang, J. Jang. Adv. Funct. Mater. 2007, 17, 431.Google Scholar
  75. 75.
    H. S. Yoon. Nanomaterials 2013, 3, 524–549.Google Scholar
  76. 76.
    C. M. Hangarter, M. Bangar, A. Mulchandani, N. V. Myung. J Mater Chem 2010,20,3131–3140.Google Scholar
  77. 77.
    S. J. Park, O. S. Kwon, J. E. Lee, J. S. Jang , H. S. Yoon. Sensors 2014, 14, 3604–3630.Google Scholar
  78. 78.
    L. Al-Mashat, K. Shin, K. Kalantar-zadeh, J. D. Plessis, S. H. Han, R. W. Kojima, R. B. Kaner, D. Li, X. L. Gou, S. J. Ippolito, W. Wlodarski. J. Phys. Chem. C 2010, 114, 16168–16173.Google Scholar
  79. 79.
    Z. Wu, X. Chen, S. Zhu, Z. Zhou, Y. Yao, W. Quan, B. Liu. Sens. Actuators B 2013, 178, 485–493.Google Scholar
  80. 80.
    W. K. Jang, J. Yun, H. I. Kim, Y. S. Lee. Colloid Polym Sci 2013, 291, 1095–1103.Google Scholar
  81. 81.
    N. Hu, Z. Yang, Y. Wang, L. Zhang, Y. Wang, X. Huang, H. Wei, L. Wei, Y. Zhang. Nanotechnology 2014, 25, 025502.Google Scholar
  82. 82.
    H. Bai, K. X. Sheng, P. F. Zhang, C. Li, G. Q. Shi. J. Mater. Chem. 2011, 21, 18653–18658.Google Scholar
  83. 83.
    T. T. Tung, M. Castro, T. Y. Kim, K. S. Suh, J. F. Feller. J. Mater. Chem. 2012, 22, 21754–21766.Google Scholar
  84. 84.
    T. T. Tung, M. Castro, J. F. Feller, T. Y. Kim, K.S. Suh. Org. Electro. 2013, 14, 2789–279472.Google Scholar
  85. 85.
    T. T. Tung, M. Castro, I. Pillin, T. Y. Kim, K. S. Suh, J. F. Feller. Carbon 2014, 74, 104–112.Google Scholar
  86. 86.
    Y. Dan, Y. Lu, N. J. Kybert, Z. Luo, A. T. C. Johnson. Nano let. 2009, 9, 1472–1475.Google Scholar
  87. 87.
    L. Zhang, C. Li, A. Liu, G. Q. Shi. J. Mater. Chem. 2012, 22, 8438–8443.Google Scholar
  88. 88.
    R. K. Paul, S. Badhulika, N. M. Saucedo, A. Mulchandani. Anal. Chem. 2012, 84, 8171–8178.Google Scholar
  89. 89.
    N. T. Hu , Y. Y. Wang, J. Chai, R. G. Gao, Z. Yang, E. S. W. Kong, Y. F. Zhang. Sensors and Actuators B 2012, 163,107–114.Google Scholar
  90. 90.
    Q. M. Ji, I. Honma, S. M. Paek, M. Akada, J. P. Hill, A. Vinu, K. Arig. Angew. Chem. Int. Ed. 2010, 49, 9737–9739.Google Scholar
  91. 91.
    X. Wang, X. Sun, P. A. Hu, J. Zhang, L. Wang, W. Feng, S. B. Lei, Bi.Yang, and W. W. Cao. Adv. Funct. Mater. 2013, 23, 6044–6050.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Tran Thanh Tung
    • 1
    Email author
  • Mickael Castro
    • 2
  • Jean Francois Feller
    • 2
  • Tae Young Kim
    • 3
  1. 1.Carbon Nanostructure and Catalyst Group, Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES)CNRS-Strasbourg UniversityStrasbourgFrance
  2. 2.Smart Plastic Groups, LIMATBUniversity of South Brittany LorientFrance
  3. 3.Department of BionanotechnologyGachon UniversitySeongnamSouth Korea

Personalised recommendations