Skip to main content

Assembling Supramolecular Rotors on Surfaces Under Ambient Conditions

  • Conference paper
  • First Online:
Single Molecular Machines and Motors

Abstract

The formation of supramolecular rotor-type systems on surfaces under ambient conditions is discussed. We present in detail the assembly of a rotor on a gold surface from solution, where the surface acts as a stator, a pyridyl containing thiol acts as the axle, and a C4 symmetrical porphyrin bearing “paddle-like” arms is the intended rotator. The effective non-covalent attachment of the rotator to the axle is achieved instantly in solution. However, when the axle forms part of a self-assembled monolayer (SAM), the complex formation is practically negated if the SAM’s organization is not appropriate. Thus, the SAM formed on gold by the pyridyl thiol subject of this study does not bind the rotator part of the system—a zinc(II)porphyrin bearing four biphenyl moieties. This negative allosteric surface effect can be overturned by combining the pyridyl thiol with dodecanethiol: the resulting mixed SAM contains pyridyl groups which are oriented quasi-perpendicular to the surface and are therefore available for binding. The difference in the surface organization is achieved using only 1 part in 10 of the alkanethiol (which forms small ordered domains alone). This dramatic effect may find use in other areas where SAMs are used as template layers because the capacity for the surface-anchored ligand to bind solution-borne compounds is affected by its orientation. Exposure of this mixed monolayer to a solution of the zinc(II)porphyrin results in attachment of this rotator component to the surface, which was imaged by scanning tunnelling microscopy (STM). Alternatively, formation of the axle–rotator complex in solution followed by chemisorption of this supramolecular object to the metal surface leads (in places) to a dense layer of the rotators. The presence of the porphyrin was confirmed by mass spectrometry. The results show how the bottom-up route employed can influence the arrangement of ligating moieties in a monolayer, provide a protocol for the preparation of sparse and dense layers of rotors on surfaces, and thereby help plot the road map to the bottom-up creation of surface-based molecular machines based on interconnected rotors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Koepf, M., Cherioux, F., Wytko, J.A., Weiss, J.: 1D and 3D surface-assisted self-organization. Coord. Chem. Rev. 256, 2872–2892 (2012). doi:10.1016/j.ccr.2012.05.039

    Article  CAS  Google Scholar 

  2. Slingenbergh, W., de Boer, S.K., Cordes, T., Browne, W.R., Feringa, B.L., Hoogenboom, J.P., De Hosson, J.T.M., van Dorp, W.F.: Selective functionalization of tailored nanostructures. ACS Nano 6, 9214–9220 (2012). doi:10.1021/nn303571p

    Article  CAS  Google Scholar 

  3. Biswas, A., Bayer, I.S., Biris, A.S., Wang, T., Dervishi, E., Faupel, F.: Advances in top-down and bottom-up surface nanofabrication: techniques, applications and future prospects. Adv. Colloid Interface Sci. 170, 2–27 (2012). doi:10.1016/j.cis.2011.11.001

    Article  CAS  Google Scholar 

  4. Fabiano, S., Pignataro, B.: Selecting speed-dependent pathways for a programmable nanoscale texture by wet interfaces. Chem. Soc. Rev. 41, 6859–6873 (2012). doi:10.1039/c2cs35074b

    Article  CAS  Google Scholar 

  5. Bakewell, D.J.G., Nicolau, D.V.: Protein linear molecular motor-powered nanodevices. Aust. J. Chem. 60, 314–332 (2007). doi:10.1071/CH06456

    Article  CAS  Google Scholar 

  6. Schaap, I.A.T., Carrasco, C., de Pablo, P.J., Schmidt, C.F.: Kinesin Walks the line: single motors observed by atomic force microscopy. Biophys. J. 100, 2450–2456 (2011). doi:10.1016/j.bpj.2011.04.015

    Article  CAS  Google Scholar 

  7. Boyle, M.M., Smaldone, R.A., Whalley, A.C., Ambrogio, M.W., Botros, Y.Y., Stoddart, J.F.: Mechanised materials. Chem. Sci. 2, 204–210 (2011). doi:10.1039/c0sc00453g

    Article  CAS  Google Scholar 

  8. Sauvage, J.-P.: Transition metal-containing rotaxanes and catenanes in motion: toward molecular machines and motors. Acc. Chem. Res. 31, 611–619 (1998). doi:10.1021/ar960263r

    Article  CAS  Google Scholar 

  9. Browne, W.R., Feringa, B.L.: Making molecular machines work. Nat. Nanotech. 1, 25–35 (2006). doi:10.1038/nnano.2006.45

    Article  CAS  Google Scholar 

  10. Balzani, V., Credi, A., Venturi, M.: Molecular machines working on surfaces and at interfaces. ChemPhysChem 9, 202–220 (2008). doi:10.1002/cphc.200700528

    Article  CAS  Google Scholar 

  11. Chiang, P.-T., Mielke, J., Godoy, J., Guerrero, J.M., Alemany, L.B., Villagómez, C.J., Saywell, A., Grill, L., Tour, J.M.: Toward a light-driven motorized nanocar: synthesis and initial imaging of single molecules. ACS Nano 6, 592–597 (2012). doi:10.1021/nn203969b

    Article  CAS  Google Scholar 

  12. Chiaravalotti, F., Gross, L., Rieder, K.-H., Stojkovic, S.M., Gourdon, A., Joachim, C., Moresco, F.: A rack-and-pinion device at the molecular scale. Nat. Mater. 6, 30–33 (2007). doi:10.1038/nmat1802

    Article  Google Scholar 

  13. Manzano, C., Soe, W.-H., Wong, H.S., Ample, F., Gourdon, A., Chandrasekhar, N., Joachim, C.: Step-by-step rotation of a molecule-gear mounted on an atomic-scale axis. Nat. Mater. 8, 576–579 (2009). doi:10.1038/NMAT2467

    Article  CAS  Google Scholar 

  14. Gimzewski, J.K., Joachim, C., Schlittler, R.R., Langlais, V., Tang, H., Johannsen, I.: Rotation of a single molecule within a supramolecular bearing. Science 281, 531–533 (1998). doi:10.1126/science.281.5376.531

    Article  CAS  Google Scholar 

  15. Tanaka, H., Ikeda, T., Takeuchi, M., Sada, K., Shinkai, S., Kawai, T.: Molecular rotation in self-assembled multidecker porphyrin complexes. ACS Nano 5, 9575–9582 (2011). doi:10.1021/nn203773p

    Article  CAS  Google Scholar 

  16. Yoshimoto, S., Honda, Y., Ito, O., Itaya, K.: Supramolecular pattern of fullerene on 2D bimolecular “chessboard” consisting of bottom-up assembly of porphyrin and phthalocyanine molecules. J. Am. Chem. Soc. 130, 1085–1092 (2008). doi:10.1021/ja077407p

    Article  CAS  Google Scholar 

  17. Kottas, G.S., Clarke, L.I., Horinek, D., Michl, J.: Artificial molecular rotors. Chem. Rev. 105, 1281–1376 (2005). doi:10.1021/cr0300993

    Article  CAS  Google Scholar 

  18. Tierney, H.L., Murphy, C.J., Jewell, A.D., Baber, A.E., Iski, E.V., Khodaverdian, H.Y., McGuire, A.F., Klebanov, N., Sykes, E.C.H.: Experimental demonstration of a single-molecule electric motor. Nat. Nanotech. 6, 625–629 (2011). doi:10.1038/NNANO.2011.142

    Article  CAS  Google Scholar 

  19. Perera, U.G.E., Ample, F., Kersell, H., Zhang, Y., Vives, G., Echeverria, J., Grisolia, M., Rapenne, G., Joachim, C., Hla, S.W.: Controlled clockwise and anticlockwise rotational switching of a molecular motor. Nat. Nanotech. 8, 46–51 (2013). doi:10.1038/NNANO.2012.218

    Article  CAS  Google Scholar 

  20. Puigmartí-Luis, J., Saletra, W.J., González, A., Amabilino, D.B., Pérez-García, L.: Bottom-up assembly of a surface-anchored supramolecular rotor enabled using a mixed self-assembled monolayer and pre-complexed components. Chem. Commun. 50, 82–84 (2014). doi:10.1039/C3CC44794D

    Article  Google Scholar 

  21. Vogel, G.C., Beckmann, B.A.: Binding of pyridine to the phenyl-substituted derivatives of zinc tetraphenylporphine. Inorg. Chem. 15, 483–484 (1976). doi:10.1021/ic50156a054

    Article  CAS  Google Scholar 

  22. Mamardashvili, G.M., Kulikova, O.M.: The effect of a solvent on complexation of Zn porphyrinates with pyridine. Russ. J. Coord. Chem. 32, 756–760 (2006). doi:10.1134/S1070328406100101

    Article  CAS  Google Scholar 

  23. Da Cruz, F., Driaf, K., Berthier, C., Lameille, J.-M., Armand, F.: Study of a self-assembled porphyrin monomolecular layer obtained by metal complexation. Thin Solid Films 349, 155–161 (1999). doi:10.1016/S0040-6090(99)00169-8

    Article  Google Scholar 

  24. Ferreira, Q., Alcácer, L., Morgado, J.: Stepwise preparation and characterization of molecular wires made of zinc octaethylporphyrin complexes bridged by 4,4′-bipyridine on HOPG. Nanotechnology 22, 435604 (7p) (2011). doi:10.1088/0957-4484/22/43/435604

  25. Dreas-Wlodarczak, A., Müllneritsch, M., Juffmann, T., Cioffi, C., Arndt, M., Mayor, M.: Immobilization of zinc porphyrin complexes on pyridine-functionalized glass surfaces. Langmuir 26, 10822–10826 (2010). doi:10.1021/la100638u

    Article  CAS  Google Scholar 

  26. Salassa, G., Coenen, M.J.J., Wezenberg, S.J., Hendriksen, B.L.M., Speller, S., Elemans, J.A.A.W., Kleij, A.W.: Extremely strong self-assembly of a bimetallic salen complex visualized at the single-molecule level. J. Am. Chem. Soc. 134, 7186–7192 (2012). doi:10.1021/ja3030802

    Article  CAS  Google Scholar 

  27. Ikeda, M., Takeuchi, M., Shinkai, S., Tani, F., Naruta, Y.: Synthesis of new diaryl-substituted triple-decker and tetraaryl-substituted double-decker lanthanum(III) porphyrins and their porphyrin ring rotational speed as compared with that of double-decker cerium(IV) porphyrins. Bull. Chem. Soc. Jpn 74, 739–746 (2001). doi:10.1246/bcsj.74.739

    Article  CAS  Google Scholar 

  28. Otsuki, J., Kawaguchi, S., Yamakawa, T., Asakawa, M., Miyake, K.: Arrays of double-decker porphyrins on highly oriented pyrolytic graphite. Langmuir 22, 5708–5715 (2006). doi:10.1021/la0608617

    Article  CAS  Google Scholar 

  29. Ghiggino, K.P., Hutchison, J.A., Langford, S.J., Latter, M.J., Lee, M.A.P., Lowenstern, P.R., Scholes, C., Takezaki, M., Wilman, B.E.: Porphyrin-based molecular rotors as fluorescent probes of nanoscale environments. Adv. Func. Mater. 17, 805–813 (2007). doi:10.1002/adfm.200600948

    Article  CAS  Google Scholar 

  30. Guenet, A., Graf, E., Kyritsakas, N., Hosseini, M.W.: Porphyrin-based switchable molecular turnstiles. Chem. Eur. J. 17, 6443–6452 (2011). doi:10.1002/chem.201100057

    Article  CAS  Google Scholar 

  31. Cnossen, A., Hou, L., Pollard, M.M., Wesenhagen, P.V., Browne, W.R., Feringa, B.L.: Driving unidirectional molecular rotary motors with visible light by intra- and intermolecular energy transfer from palladium porphyrin. J. Am. Chem. Soc. 134, 17613–17619 (2012). doi:10.1021/ja306986g

    Article  CAS  Google Scholar 

  32. Otsuki, J., Komatsu, Y., Kobayashi, D., Asakawa, M., Miyake, K.: Rotational libration of a double-decker porphyrin visualized. J. Am. Chem. Soc. 132, 6870–6871 (2010). doi:10.1021/ja907077e

    Article  CAS  Google Scholar 

  33. Yan, S.C., Ding, Z.J., Xie, N., Gong, H.Q., Sun, Q., Guo, Y., Shan, X.Y., Meng, S., Lu, X.H.: Turning on and off the rotational oscillation of a single porphine molecule by molecular charge state. ACS Nano 6, 4132–4136 (2012). doi:10.1021/nn301099m

    Article  CAS  Google Scholar 

  34. Lensen, D., Elemans, J.A.A.W.: Artificial molecular rotors and motors on surfaces: STM reveals and triggers. Soft Matter 8, 9053–9063 (2012). doi:10.1039/c2sm26235e

    Article  CAS  Google Scholar 

  35. Widrig, C.A., Alves, C.A., Porter, M.D.: Scanning tunnelling microscopy of ethanethiolate and normal-octadecanethiolate monolayers spontaneously adsorbed on gold surfaces. J. Am. Chem. Soc. 113, 2805–2810 (1991). doi:10.1021/ja00008a001

    Article  CAS  Google Scholar 

  36. Vericat, C., Vela, M.E., Salvarezza, R.C.: Self-assembled monolayers of alkanethiols on Au(111): surface structures, defects and dynamics. Phys. Chem. Chem. Phys. 7, 3258–3268 (2005). doi:10.1039/b505903h

    Article  CAS  Google Scholar 

  37. Silien, C., Buck, M., Goretzki, G., Lahaye, D., Champness, N.R., Weidner, T., Zharnikov, M.: Self-assembly of a pyridine-terminated thiol monolayer on Au(111). Langmuir 25, 959–967 (2009). doi:10.1021/la802966s

    Article  CAS  Google Scholar 

  38. Tao, Y.-T., Wu, Ch-Ch., Eu, J.-Y., Lin, W.-L.: Structure evolution of aromatic-derivatized thiol monolayers on evaporated gold. Langmuir 13, 4018–4023 (1997). doi:10.1021/la9700984

    Article  CAS  Google Scholar 

  39. Pace, G., Petitjean, A., Lalloz-Vogel, M.-N., Harrowfield, J., Lehn, J.-M., Samorì, P.: Subnanometer-resolved patterning of bicomponent self-assembled monolayers on Au(111). Angew. Chem. Int. Ed. 47, 2484–2488 (2008). doi:10.1002/anie.200704731

    Article  CAS  Google Scholar 

  40. Chen, S., Li, L., Boozer, C.L., Jiang, S.: Controlled chemical and structural properties of mixed self-assembled monolayers of alkanethiols on Au(111). Langmuir 16, 9287–9293 (2000). doi:10.1021/la000417i

    Article  CAS  Google Scholar 

  41. Wan, L.-J., Hara, Y., Noda, H., Osawa, M.: Dimerization of sulfur headgroups in 4-mercaptopyridine self-assembled monolayers on Au(111) studied by scanning tunneling microscopy. J. Phys. Chem. B 102, 5943–5946 (1998). doi:10.1021/jp981218z

    Article  CAS  Google Scholar 

  42. Penon, O., Marsico, F., Santucci, D., Rodríguez, L., Amabilino, D.B., Pérez-García, L.: Multiply biphenyl substituted zinc(II)porphyrin and phthalocyanine as components for molecular materials. J. Porphyrins Phthalocyanines 16, 1293–1302 (2012). doi:10.1142/S1088424612501453

    Article  CAS  Google Scholar 

  43. Baber, A.E., Tierney, H.L., Sykes, E.C.H.: A quantitative single-molecule study of thioether molecular rotors. ACS Nano 2, 2385–2391 (2008). doi:10.1021/nn800497y

    Article  CAS  Google Scholar 

  44. Coskun, A., Banaszak, M., Astumian, R.D., Stoddart, J.F., Grzybowski, B.A.: Great expectations: can artificial molecular machines deliver on their promise? Chem. Soc. Rev. 41, 19–30 (2012). doi:10.1039/c1cs15262a

    Article  CAS  Google Scholar 

  45. von Delius, M., Leigh, D.A.: Walking molecules. Chem. Soc. Rev. 40, 3656–3676 (2011). doi:10.1039/c1cs15005g

    Article  Google Scholar 

  46. Penon, O., Moro, A.J., Santucci, D., Amabilino, D.B., Lima, J.C., Pérez-García, L., Rodríguez, L.: Molecular recognition of aliphatic amines by luminescent Zn-porphyrins. Inorg. Chim. Acta 417, 222–229 (2014). doi:10.1016/j.ica.2013.12.028

Download references

Acknowledgments

The research reported here was supported by the MINECO, Spain (projects CTQ2010-16339 and TEC2011-29140-C03-02), and the DGR, Catalonia (Project 2009 SGR 158). The authors acknowledge warmly Dr. Daniel Ruiz-Molina for the loan of the STM head. JPL thanks the MINECO for a Ramón y Cajal contract (RYC-2011-08071).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Puigmartí-Luis, J., Saletra, W.J., González, A., Pérez-García, L., Amabilino, D.B. (2015). Assembling Supramolecular Rotors on Surfaces Under Ambient Conditions. In: Joachim, C., Rapenne, G. (eds) Single Molecular Machines and Motors. Advances in Atom and Single Molecule Machines. Springer, Cham. https://doi.org/10.1007/978-3-319-13872-5_8

Download citation

Publish with us

Policies and ethics