Skip to main content

Detecting CDOM Fluorescence Using High Spectrally Resolved Satellite Data: A Model Study

  • Chapter
  • First Online:

Part of the book series: Springer Earth System Sciences ((SPRINGEREARTH))

Abstract

Absorption and fluorescence of CDOM are widely used to characterize its concentration and composition, both in situ and with remote sensing techniques. As fluorescence is an inelastic scattering process, it can potentially be observed in filling-in of Fraunhofer lines with the DOAS method in high spectrally resolved satellite data. Here, we perform a theoretical model study and preliminary DOAS retrieval on SCIAMACHY data in order to test the feasibility of such an approach. Our results show that retrieving CDOM fluorescence is difficult, due to its relatively weak signal in global oceans (in comparison to Raman scattering of clear water) and varying broad spectral features. Detailed studies of the synergistic use of narrow and broad fluorescence features, and an appropriate scheme to account for disturbance effects of Raman scattering, are needed for further investigating the retrieval of CDOM fluorescence.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Babin M (2003) Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe. J Geophys Res 108(C7)

    Google Scholar 

  • Blum M, Rozanov V, Burrows J, Bracher A (2012) Coupled ocean-atmosphere radiative transfer model in the framework of software package SCIATRAN: selected comparisons to model and satellite data. Adv Space Res 49(12):1728–1742

    Article  Google Scholar 

  • Bovensmann H, Burrows JP, Buchwitz M, Frerick J, Noël S, Rozanov VV, Chance KV, Goede APH (1999) SCIAMACHY: mission objectives and measurement modes. J Atmos Sci 56(2):127–150

    Article  Google Scholar 

  • Bracher A, Vountas M, Dinter T, Burrows J, Röttgers R, Peeken I (2009) Quantitative observation of cyanobacteria and diatoms from space using PhytoDOAS on SCIAMACHY data. Biogeosciences 6:751–764

    Article  Google Scholar 

  • Burrows JP, Weber M, Buchwitz M, Rozanov V, Ladstätter-Weißenmayer A, Richter A, DeBeek R, Hoogen R, Bramstedt K, Eichmann K-U (1999) The global ozone monitoring experiment (GOME): mission concept and first scientific results. J Atmos Sci 56(2):151–175

    Article  Google Scholar 

  • Garver SA, Siegel DA (1997) Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation: 1. time series from the Sargasso Sea. J Geophys Res 102(C8):18607

    Article  Google Scholar 

  • Grainger JF, Ring J (1962) Anomalous Fraunhofer line profiles. Nature 193(4817):762

    Article  Google Scholar 

  • Green SA, Blough NV (1994) Optical absorption and fluorescence properties of chromophoric dissolved organic matter in natural waters. Limnol Oceanogr 39(8):1903–1916

    Article  Google Scholar 

  • Hawes SK (1992) Quantum fluorescence efficiencies of marine fulvic and humic acids. M.Sc. thesis. University of South Florida, Tampa

    Google Scholar 

  • Hudson N, Baker A, Reynolds D (2007) Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters-a review. River Res Appl 23(6):631–649

    Article  Google Scholar 

  • Ishii SKL, Boyer TH (2012) Behavior of reoccurring PARAFAC components in fluorescent dissolved organic matter in natural and engineered systems: a critical review. Environ Sci Technol 46(4):2006–2017

    Article  Google Scholar 

  • Jørgensen L, Stedmon CA, Kragh T, Markager S, Middelboe M, Søndergaard M (2011) Global trends in the fluorescence characteristics and distribution of marine dissolved organic matter. Mar Chem 126(1–4):139–148

    Google Scholar 

  • Kattawar GW, Xu X (1992) Filling in of Fraunhofer lines in the ocean by Raman scattering. Appl Opt 31(30):6491

    Article  Google Scholar 

  • Maritorena S, Siegel D, Peterson A (2002) Optimization of a semianalytical ocean color model for global-scale applications. Appl Opt 41(15):2705–2714

    Article  Google Scholar 

  • Mobley CD (1994) Light and water: radiative transfer in natural waters. Academic Press, San Diego (u.a.)

    Google Scholar 

  • Morel A, Gentili B (2009) A simple band ratio technique to quantify the colored dissolved and detrital organic material from ocean color remotely sensed data. Remote Sens Environ 113(5):998–1011

    Article  Google Scholar 

  • Nelson NB, Siegel DA (2013) The global distribution and dynamics of chromophoric dissolved organic matter. Annu Rev Mar Sci 5(1):447–476

    Article  Google Scholar 

  • Pozdnyakov D, Grassl H, Lyaskovsky A, Pettersson L (2002) Numerical modelling of transspectral processes in natural waters: Implications for remote sensing. Int J Remote Sens 23(8):1581–1607

    Article  Google Scholar 

  • Richter A, Burrows JP, Nüß H, Granier C, Niemeier U (2005) Increase in tropospheric nitrogen dioxide over China observed from space. Nature 437(7055):129–132

    Article  Google Scholar 

  • Rozanov V, Rozanov A, Kokhanovsky A, Burrows J (2014) Radiative transfer through terrestrial atmosphere and ocean: software package SCIATRAN. J Quant Spectrosc Radiat Transfer 133:13–71

    Google Scholar 

  • Rozanov VV, Rozanov AV (2010) Differential optical absorption spectroscopy (DOAS) and air mass factor concept for a multiply scattering vertically inhomogeneous medium: theoretical consideration. Atmos Meas Tech 3:751–780

    Article  Google Scholar 

  • Sadeghi A, Dinter T, Vountas M, Taylor B, Altenburg-Soppa M, Bracher A (2012) Remote sensing of coccolithophore blooms in selected oceanic regions using the PhytoDOAS method applied to hyper-spectral satellite data. Biogeosciences 9:2127–2143

    Article  Google Scholar 

  • Sinnhuber B-M, Sheode N, Sinnhuber M, Chipperfield MP, Feng W (2009) The contribution of anthropogenic bromine emissions to past stratospheric ozone trends: a modelling study. Atmos Chem Phys 9:2863–2871

    Article  Google Scholar 

  • Stedmon C, Markager S, Bro R (2003) Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Mar Chem 82(3–4):239–254

    Article  Google Scholar 

  • Stedmon CA, Bro R (2008) Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial. Limnol Oceanogr Methods 6:572–579

    Article  Google Scholar 

  • Vodacek A (1989) Synchronous fluorescence spectroscopy of dissolved organic matter in surface waters: application to airborne remote sensing. Remote Sens Environ 30(3):239–247

    Article  Google Scholar 

  • Vodacek A, Green SA, Blough NV (1994) An experimental model of the solar-stimulated fluorescence of chromophoric dissolved organic matter. Oceanography 39(1)

    Google Scholar 

  • Vountas M, Dinter T, Bracher A, Burrows JP, Sierk B (2007) Spectral studies of ocean water with space-borne sensor SCIAMACHY using differential optical absorption spectroscopy (DOAS). Ocean Sci 3(3):429–440

    Article  Google Scholar 

  • Vountas M, Richter A, Wittrock F, Burrows JP (2003) Inelastic scattering in ocean water and its impact on trace gas retrievals from satellite data. Atmos Chem Phys 3(5):1365–1375

    Article  Google Scholar 

  • Vountas M, Rozanov V, Burrows J (1998) Ring effect: impact of rotational Raman scattering on radiative transfer in Earth’s atmosphere. J Quant Spectrosc Radiat Transfer 60(6):943–961

    Article  Google Scholar 

Download references

Acknowledgments

Aleksandra Wolanin gratefully acknowledges financial support provided by the Earth System Science Research School (ESSReS), an initiative of the Helmholtz Association of German Research Centres (HGF) at the Alfred Wegener Institute for Polar and Marine Research (AWI) and HGF Innovative Network Fund (PHYTOOPTICS project). Authors thank DLR and ESA for SCIAMACHY level-1 data. We also acknowledge the MODIS mission scientists and associated NASA personnel for the production of the data used in this research effort. Analyses and visualizations were produced with the Giovanni online data system, developed and maintained by the NASA GES DISC. We also thank C. Stedmon and K. Carder for providing CDOM data and their helpful comments throughout the development of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandra Wolanin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wolanin, A., Rozanov, V., Dinter, T., Bracher, A. (2015). Detecting CDOM Fluorescence Using High Spectrally Resolved Satellite Data: A Model Study. In: Lohmann, G., Meggers, H., Unnithan, V., Wolf-Gladrow, D., Notholt, J., Bracher, A. (eds) Towards an Interdisciplinary Approach in Earth System Science. Springer Earth System Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-13865-7_13

Download citation

Publish with us

Policies and ethics