Skip to main content

Natural Fiber-Reinforced Composites: Potential, Applications, and Properties

  • Chapter
  • First Online:
Agricultural Biomass Based Potential Materials

Abstract

The majority of the mounting countries are extremely rich in agricultural biomass such as natural fiber. Apart from a few exceptions, a huge part of agricultural biomass wastes is used as a substitute for different applications. India only produces more than 400 million tonnes of agricultural dissipate yearly. A huge fraction of agricultural biomass wastes comprises various natural fibers. All these natural fibers have brilliant properties and could be exploited successfully in the development of composite materials for a variety of structural and nonstructural applications. This chapter focuses on the prospective use of natural fibers in composite materials, their availability, importance, mechanical and physical properties, and their applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acda MN (2010) Waste chicken feathers as reinforcement in cement bonded composites. Philipp J Sci 139(2):161–166

    Article  Google Scholar 

  • Akers SAS, Garrett GG (1983) Observations and predictions of fracture in asbestos–cement composites. J Mater Sci 18:2209–2214

    Article  Google Scholar 

  • Akers SAS, Garrett GG (1986) The influence of processing parameters Lee on the strength and toughness of asbestos cement composites. Longman, London

    Google Scholar 

  • Amar KM, Manjusri M, Lawrence TD (2005) Natural fibers, biopolymers, and bio-composites. CRC, Boca Raton

    Google Scholar 

  • ATSDR (2011) http://www.atsdr.cdc.gov/toxprofiles/tp61.pdf. Accessed on 03 Apr 2011

  • Baiardo M, Zini E, Scandola M (2004) Flax fiber-polyester composites. Compos Part A 35:703–710

    Article  Google Scholar 

  • Berivan, Erik, Hasan H, Sebnem A, Nuriye K (2008) Biomechanical properties of human hair with different parameters. Skin Res Technol 14:147–151

    Google Scholar 

  • Bisanda EN, Ansell MP (1992) Properties of Sisal–CNSL Composites. J Mater Sci 27:1690–1700

    Article  CAS  Google Scholar 

  • Boeing Press Release (1996) New boeing composite structure leads the way to lighter cheaper satellites, 2nd October 1996

    Google Scholar 

  • Bledzki AK, Faruk O (2004) Wood fiber reinforced polypropylene composites: compression and injection molding process. Polym-Plast Technol Eng 43:871–888

    Article  CAS  Google Scholar 

  • Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibers. Prog Polym Sci 24:221–274

    Article  CAS  Google Scholar 

  • Bledzki AK, Mamun AA, Lucka-Gabor M, Gutowski VS (2008) The effects of acetylation on properties of flax fiber and its polypropylene composites. Express Polym Lett 2:413–422

    Article  CAS  Google Scholar 

  • Blicblau AS (1997) Novel composites utilizing raw wool and polyester resin. J Mater Sci C Lett 16:1417–1419

    Article  CAS  Google Scholar 

  • Cantero G, Arbelaiz A, Llano-Ponte R, Mondragon I (2003) Effects of fiber treatment on wettability and mechanical behavior of flax/polypropylene composites. Compos Sci Technol 63:1247–1254

    Article  CAS  Google Scholar 

  • Chaudhary V, Gohil P (2013) Experimental assessment and simulation for mechanical properties of unidirectional cotton-polyester composite material. Eur J Sci Res 108:603–612

    Google Scholar 

  • D’Arcy JB (1986) Sheep management & wool technology. NSW University Press, Kensington. ISBN 0(86840 106):4

    Google Scholar 

  • Dasgupta A, Agarwal RK (1992) Orthotropic thermal conductivity of plainweave: fabric composite using a homogenization technique. J Compos Mater 26:2736–2758

    Article  CAS  Google Scholar 

  • Dash BN, Rana AK, Mishra HK, Nayak SK, Mishra SC, Tripathy SS (1999) Novel, low-cost jute-polyester composites. Part 1: processing, mechanical properties, and SEM analysis. Polym Compos 20:62–71

    Article  CAS  Google Scholar 

  • Dawber RPR, Messenger AG (1997) Hair follicle structure, keratinization and the physical properties of hair. In: Dawber RPR (ed) Physical properties of hair. Blackwell Science, Oxford, pp 45–50

    Google Scholar 

  • FAO (2010) http://www.fao.org. Accessed 12 Dec 2010

  • Fonseca VM, Fernandes VJ, Carvalho LH, Almeida JRM (2004) Evaluation of the mechanical properties of sisal-polyester composites as a function of the polyester matrix formulation. J Appl Polym Sci 94:1209–1217

    Article  CAS  Google Scholar 

  • Gayer U, Schuh T (1996) Automotive application of natural fibers composite, proceedings of the 1st International Symposium on Lignocellulosic Composites, UNESP-Sao Paulo State University

    Google Scholar 

  • Geethamma VG, Mathew KT, Lakshminarayana R, Thomas S (1998) Composite of short coir fibers and natural rubber: effect of chemical modification, loading and orientation of fiber. Polymer 39:1483–1491

    Article  CAS  Google Scholar 

  • Gohil PP, Shaikh AA (2007) Comparative study of cotton-polyester filament wound composite and PVC shell structure—a case study, Proceedings of 2nd International Conference on recent advances in composite materials (ICRACM-2007), Banaras Hindu University, Varanasi (India), pp 21–23

    Google Scholar 

  • Gohil PP, Shaikh AA (2010) Experimental investigation and micro mechanics assessment for longitudinal elastic modulus in unidirectional cotton-polyester composites. Int J Eng Technol 2:111–118

    CAS  Google Scholar 

  • Hatta N, Akmar N (2008) Mechanical properties of polystyrene/polypropylene reinforced coconut and jute fibers, Proceedings of CUTSE International Conference 2008, Miri, Sarawak, Malaysia, 24–27

    Google Scholar 

  • Hong CK, Wool RP (2005) Development of bio-based composite materials from soybean oil and keratin fibers. J Appl Polym Sci 95:1524–1538

    Article  CAS  Google Scholar 

  • Kaith BS, Singha AS, Kumar S, Kalia S (2008) Mercerization of flax fiber improves the mechanical properties of fiber-reinforced composites. Int J Polym Mater 57:54–72

    Article  CAS  Google Scholar 

  • Kim SM, Moon JB, Kim GH, Chang SH (2008) Mechanical properties of polypropylene/natural fiber composites: comparison of wood fiber and cotton fiber. Polym Test 27(7):801–806

    Google Scholar 

  • Kulkarni G, Satyanarayana KG, Rohatgi PK, Kalyani V (1983) Mechanical properties of banana fibers. J Mater Sci 18:2290–2296

    Article  Google Scholar 

  • Lamy B, Pomel C (2002) Influence of fiber defects on the stiffness properties of flax fibers–epoxy composite materials. J Mater Sci Lett 21:1211–1213

    Article  CAS  Google Scholar 

  • Lee DG, Kim SS (2004) Failure analysis of asbestos-phenolic composite journal bearing. Compos Struct 65:37–46

    Article  Google Scholar 

  • Mayer S, Seeds AD (1994) BMW’s Aluminium light-weight prototype car projects: comparison of aluminium and steel performance. SAE Technical Paper 940154.

    Google Scholar 

  • Mishra HK, Dash BN, Tripathy SS, Padhi BN (2000) A study on mechanical performance of jute–epoxy composites. Poly-Plast Technol Eng 39:187–198

    Article  Google Scholar 

  • Mohan KR, Sridhar MK, Rao RM (1983) Compressive strength of jute-glass hybrid fiber composites. J Mater Sci Lett 2:99–102

    Article  CAS  Google Scholar 

  • Mohanty S, Verma SK, Nayak SK, Tripathy SS (2004) Influence of fiber treatment on the performance of sisal-polypropylene composites. J Appl Polym Sci 94:1336–1345

    Article  CAS  Google Scholar 

  • Mohanty AK, Mishr AM, Drzal LT, Selke SE, Harte BR, Hinrichsen G (2005) Natural fibers, biopolymers and biocomposites: introduction. In: Fibers, Biopolymers and Biocomposites, 1st edn. pp 1–36

    Google Scholar 

  • Mukhopadhyay M (2005) Mechanics of composite materials and structures. University Press, India

    Google Scholar 

  • Mussig J (2008) Cotton fiber-reinforced thermosets versus ramie composites: a comparative study using petrochemical and agro based resins. J Environ Polym Degr 16:94–102

    Article  Google Scholar 

  • Nair KCM, Thomas S (2003) Effect of Interface modification on the mechanical properties of polystyrene–sisal fiber composites. Polym Compos 24:332–343

    Article  CAS  Google Scholar 

  • New Generation Scorpio (1996) New Boeing composite structure Leads the way to lighter cheaper satellites. Boeing Press Release

    Article  CAS  Google Scholar 

  • Nangia S, Biswas S (2009) Technical report of TIFAC projects on composites. http://tifac.org.in/index.php?option=com_content&view=article&id=545:jute-composite-technology-a-business-opportunities-&catid=85:publications&Itemid=952. Accessed on 22 Jul 2014

  • Oksman K, Wallstro L, Berglund LA, Filho RDT (2002) Morphology and mechanical properties of unidirectional sisal-epoxy composites. J Appl Polym Sci 84:2358–2365

    Article  CAS  Google Scholar 

  • Perez-Rigueiro J, Viney C, Llorca J, Elices M (2000) Mechanical properties of single-brin silkworm silk. J Appl Polym Sci 75:1270–1277

    Article  CAS  Google Scholar 

  • Pervaiz M, Sain MM (2003) Carbon storage potential in natural fiber composites. Res Conserv Recycl 39:325–340

    Article  Google Scholar 

  • Proc Natl Acad Sci U S A 256–261

    Article  Google Scholar 

  • Prum RO, Brush AH (2002) The evolutionary origin and diversification of feathers. Q Rev Biol 77:261–295

    Article  PubMed  Google Scholar 

  • Quazi TH, Shubhra AKMM, Alam MA, Gafur Sayed M, Shamsuddin Mubarak A, Khan M, Dipti Saha MA, Quaiyyum JA, Khan MD, Ashaduzzaman MD (2010) Characterization of plant and animal based natural fibers reinforced polypropylene composites and their comparative study. Fibers Polym 11:725–731

    Article  Google Scholar 

  • Ray D, Sarkar BK, Rana AK, Bose NR (2001) Effect of alkali treated jute fibers on composite properties. Bull Mater Sci 24:129–135

    Article  CAS  Google Scholar 

  • Saeb DN, Jog JP (1999) Natural fiber polymer composites: a review. Adv Polym Tech 18:351–363

    Article  Google Scholar 

  • Sanadi AR, Caulfield DF, Jacobson RE, Rowell RM (1995) Renewable agricultural fibers as reinforcing fillers in plastics: mechanical properties of kenaf fiber polypropylene composites. Ind Eng Chem Res 34:1889

    Article  CAS  Google Scholar 

  • Sapuan SM, Malique MA (2005) Design and fabrication of natural woven fabric reinforced epoxy composite for household telephone stand. Mater Des 26:65–71

    Article  CAS  Google Scholar 

  • Sapuan SM, Hassan MY, Kassim MR (2001) Tensile and flexural properties of epoxy composites based on coconut fibers. Cienc Technol Mater 13:41–43

    Google Scholar 

  • Sapuan SM, Harimi M, Maleque MA (2003) Mechanical properties of epoxy/coconut shell filler particle composites. Arabi J Sci Eng 28:171–181

    Google Scholar 

  • Sapuan SM, Leenie A, Harimi M, Beng YK (2006) Mechanical properties of woven banana fiber reinforced epoxy composites. Mater Des 27:689–693

    Article  CAS  Google Scholar 

  • Satyanarayana KG, Kulkarni AG, Sukumaran K, Pillai SGK, Cheriyan KA, Rohatgi PK (1981) On the possibility of using natural fiber polymer composites. In: Marshall IH (ed) Proceedings of the 1st International Conference on Composite Structures. Applied Science, London, pp 618–623

    Google Scholar 

  • Satyanarayana KG, Pillai CKS, Sukumaran K, Pillai SGK, Rohatgi PK, Vijayan K (1982) Structure property studies of fibers from various parts of the coconut tree. J Mater Sci 17:2453

    Article  CAS  Google Scholar 

  • Satyanarayana KG, Sukumaran K, Kulkarni AG, Pillai SGK, Rohatgi PK (1983) Performance of Banana Fabric-Polyester Composites. Proceedings of 2nd International Conference on Composite Structure, vol 13, pp 535–538

    Google Scholar 

  • Satyanarayana KG, Sukumaran K, Pillai SGK, Ravikumar KK, Mukherjee PS, Pavithran C, Bramhakumar M, Guruswamy P, Pal BC (1984) Possibility of using natural fiber composites as building materials, Proceedings of International conference on low cost housing for developing countries, Roorkee, India, Sarita Prakashan, Meerut, India 177–181.

    Google Scholar 

  • Satyanarayana KG, Sukumaran K, Kulkarni AG, Pillai SGK, Rohatgi PK (1986) Fabrication and properties of natural fiber reinforced polyester composites. Composites 17:329–333

    Article  CAS  Google Scholar 

  • Satyanarayana KG, Sukumaran K, Mukherjee PS, Pavithran C, Pillai SGK (1990) Natural fiber polymer composites. Cem Concr Comp 12:117–136

    Article  CAS  Google Scholar 

  • Saxena M, Pappu A, Sharma A, Haque R, Wankhede S (2011) Composite materials from natural resources: recent trends and future potentials. In: Saxena M, Pappu A, Sharma A, Haque R, Wankhede S (eds) Advances in composite materials—analysis of natural and man-made materials. Intech, Czech

    Google Scholar 

  • Schwartz MM (1992) Composite materials handbook, 2nd edn. Mc Graw Hill, USA, pp 34–35

    Google Scholar 

  • Shah SP (1981) Fiber reinforced concretes, a review of capabilities publication C810261. The Aberdeen Group

    Google Scholar 

  • Singh B, Gupta M, Verma M (1996) Influence of fiber surface treatment on the properties of sisal-polyester composites. Polym Compos 17:910–918

    Article  CAS  Google Scholar 

  • Sung HN, Churchill BG, Suh NP (1975) Studies of the flexural properties of asbestos reinforced phenolic composites. J Mater Sci 19:1741–1750

    Article  Google Scholar 

  • Wiley J (1955) Hand book of engineering materials, minerals and sea stones. Wiley engineering hand book series. Wiley, New York

    Google Scholar 

  • Zhong JB, Wei JLC (2007) Mechanical properties of sisal fiber reinforced urea formaldehyde resin composites. Express Polym Lett 1:681–687

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piyush P. Gohil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gohil, P., Chaudhary, V., Shaikh, A. (2015). Natural Fiber-Reinforced Composites: Potential, Applications, and Properties. In: Hakeem, K., Jawaid, M., Y. Alothman, O. (eds) Agricultural Biomass Based Potential Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-13847-3_3

Download citation

Publish with us

Policies and ethics