Skip to main content

Biomass Pellet Technology: A Green Approach for Sustainable Development

  • Chapter
  • First Online:

Abstract

The supply of sustainable or green energy is the main challenge that mankind will face over the coming decades, especially because of the need to address climatic changes. Biomass being abundantly available in nature can make a substantial contribution to cater future energy demands in a sustainable way. Currently, it is the largest universal contributor of green energy and has significant potential to expand in the production of electricity, heat and fuels. However, handling as well as direct combustion of biomass is restrained due to peculiar properties of this kind of fuel. As raw biomass possesses low density (30–50 kg/m3) and high moisture content that limits its usage for energy purposes and it needs to be densified prior to its use. The compact and densified biomass possess a high magnitude of density as well as low moisture content which in turn helps to dwindle technical limitations associated with storage, handling and transportation. One immediate solution is the pelletisation of raw biomass that enhances its energy efficiency and enables the competition of biomass with other types of fuels. Besides, biomass pellet technology has gained a rapid momentum in many European countries. The future of the biomass pellet industry is greatly influenced by various environmental, economic, political as well as social aspects that create a multiplex relation among suppliers, producers and consumers. Therefore, the main aim of this chapter is to develop a comprehensive review of biomass processing that involves pellet production technology, energy efficiency of biomass pellet, current status, opportunities and challenges for the development of biomass pellet market.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdul Salam P Bhattacharya SC Perera KKCK Rathnasiri PG Senerath SAS Sugathapala AGT (2005) Assessment of sustainable energy potential of non-plantationbiomass resources in Sri Lanka. Biomass Bioenergy 29:199–213

    Article  Google Scholar 

  • Adapa PK, Bucko J, TabilL, Schoenau G, Sokhansanj S (2002) Pelleting Characteristics of Fractionated Suncure and Dehydrated Alfalfa Grinds. ASAE/CSAE North-Central Intersectional Meeting, Saskatoon, Saskatchewan, Canada, September 27–28

    Google Scholar 

  • Adapa PK, Tabil LG, Schoenau G (2009) Compression characteristics of selected ground agricultural biomass. Agricultural Engineering International: CIGR Ejournal, Manuscript 1347

    Google Scholar 

  • Alebiowu G, Itiola OA (2002) Compression characteristics of native and pre-gelatinized forms of sorghum, plantain, and corn starches and the mechanical properties of theirtablets. Drug Dev Ind Pharmy 28(6):663–672

    Article  CAS  Google Scholar 

  • Anglès MN, Ferrando F, Farriol X, Salvadó J (2001) Suitability of steam exploded residual softwood for the production of binderless panels. Effect of the pre-treatmentseverity and lignin addition. Biomass Bioenergy 21:211–224

    Article  Google Scholar 

  • Back EL (1987) The bonding mechanism in hardboard manufacture. Holzforschnung 41(4):247–258

    Article  CAS  Google Scholar 

  • Bapat DW, Kulkarni SV, Bhandarkar VP (1997) Design and operating experience on fluidized bed boiler burning biomass fuels with high alkali ash. In: Preto FDS (ed) Proceedings of the 14th international conference on fluidized bed combustion. ASME, New York, pp 165–174

    Google Scholar 

  • Baxter XC, Christodoulou A, Darvell LI, Jones JM, Yates NE, Shield I, Barraclough T (2011) Influence of particle size on the analytical and chemical properties of Miscanthus as an energy crop. In: Proceedings of the Bioten conference on biomass, bioenergy and biofuels

    Google Scholar 

  • Berndes G, Hoogwijk M, van den Broek, R (2003) The contribution of biomass in the future global energy supply: a review of 17 studies. Biomass Bioenergy 25:1–28

    Article  Google Scholar 

  • Björheden R (2006) Driers behind the development of forest energy in Sweden. Biomass Bioenergy 30:289–295

    Article  Google Scholar 

  • Boundy B, Diegel SW, Wright L, Davis SC (2011) Biomass energy data book, 4th edn. Prepared for office of the biomass program, energy efficiency and renewable energy U.S. Department of Energy

    Google Scholar 

  • Bridgeman TG, Darvell LI, Jones JM, Williams PT, Fahmi R, Bridgewater AV, Barraclough T, Shield I, Yates N, Thain SC, Donnison IS (2007) Influence of particlesize on the analytical and chemical properties of two energy crops. Fuel 86:60–72

    Article  CAS  Google Scholar 

  • Briggs JL, Maier DE, Watkins BA, Behnke KC (1999) Effect of ingredients andprocessing parameters on pellet quality. Poult Sci 78:1464–1471

    Article  CAS  PubMed  Google Scholar 

  • Carneiro P, Ferreira P (2012) The economic, environmental and strategic value of biomass. Renew Energy 44: 17–22

    Article  Google Scholar 

  • Chai KH, Yeo C (2012) Overcoming energy efficiency barriers through systemsapproach a conceptual framework. Energy Policy 46:460–472

    Article  Google Scholar 

  • Chen W, Lickfield GC, Yang CQ (2004) Molecular modeling of cellulose in amorphous state. Part I: model building and plastic deformation study. Polymer 45:1063–1071

    Article  CAS  Google Scholar 

  • Chen Q, Swithenbank J, Sharifi VN (2008) Review of biomass and solid recovered fuel (SRF) pelletisation technologies, EPSRC Supergen bioenergy theme 4 (heat and power),SUWIC, Sheffield University

    Google Scholar 

  • Collado LS, Corke H (2003) Starch properties and functionalities. In: Kaletunç G, Breslauer KJ (eds) Characterization of cereals and flours. Marcel Dekker, New York, pp 473–506

    Google Scholar 

  • Demirbas A (2004) Combustion characteristics of different biomass fuels. Prog Energy Combustion Sci 30:219–230

    Article  CAS  Google Scholar 

  • Demirbas A, ahin-Demirba A, HilalDemirba A (2004) Briquetting properties of biomass waste materials. Energy Sour 26:83–91

    Article  CAS  Google Scholar 

  • Di Blasi C, Tanzi V, Lanzetta M (1997) A study of production of agricultural residues in Italy. Biomass Bioenergy 12(5):321–331

    Article  Google Scholar 

  • Eid Hohle E (2001) Bioenergi–Miljø, teknikkog marked. ISBN 82-995884-0-5. Energigården. Brandbu, Norway. (In Norwegian)

    Google Scholar 

  • Ericsson K, Nilsson LJ (2004) International biofuel trade a study of the swedish import. Biomass Bioenergy 26:205–220

    Article  Google Scholar 

  • European Commission (1997) Communication from the Commission, Energy for the Future – Renewable Sources of Energy, White Paper for a Community Strategy and Action Plan. COM (97)599

    Article  CAS  PubMed  Google Scholar 

  • Fasina O (2008) Physical properties of peanut hull pellets. Bioresour Technol 99(5):1259–1266

    Article  CAS  PubMed  Google Scholar 

  • Fernandes U, Costa M (2010) Potential of biomass residues for energy production and utilization in a region of Portugal. Biomass Bioenergy 34(5):661–666

    Article  Google Scholar 

  • Godfrey B (2004) Renewable energy—power for a sustainable future, 2nd edn. Oxford University Press, London

    Google Scholar 

  • Goh CS, Junginger M, Cocchi M, Marchal D, Thrän D, Hennig C, Heinimö J, Nikolaisen L, Schouwenberg P-P, Bradley D, Hess R, Jacobson J, Ovard L, Deutmeyer M (2013) Wood pellet market and trade: a global perspective. Biofuel Bioprod Biorefin 7(1):24–42

    Article  CAS  Google Scholar 

  • Goldstein IS (1981) Composition of Biomass. In: Goldstein IS (ed) Organic chemicals from biomass. CRC Press, Boca Raton, pp. 9–18

    Google Scholar 

  • Granada E, López González LM, Míguez JL, Moran J (2002) Fuel LignocellulosicBriquettes, die design, and products study. Renew Energy 27:561–573

    Article  CAS  Google Scholar 

  • Granström K (2003) Emissions of monoterpenes and vocs during drying of sawdust in a spouted bed. For Prod J 53(10):48–55

    Google Scholar 

  • Greinöcker C, Pichler W, Golser M (2006) Hygroscopicity of wood pellets test method development influence on pellet quality coating of wood pellets. Proceedings of the 2nd world conference on pellets, Pellets 2006. 30 May–1 June, Jönköping, Sweden

    Google Scholar 

  • Hahn, B (2004) Existing guidelines and quality assurance for fuel pellets for Europe. UMBERA (UmweltorientierteBetriebsberatungs- Forschungs- und Entsorgungs- Gesellschaftm.b.H.). St. Pölten, Austria

    Google Scholar 

  • Hall D, Rosillo-Calle OF, de Groot P (1992) Biomass energy: lessons from case studies in developing countries. Energy Policy 20:62–73

    Article  Google Scholar 

  • Heinimö J, Junginger HM (2009) Production and trading of biomass for energy—an overview of the global status. Biomass Bioenerg 33(9):1310–20

    Article  Google Scholar 

  • Hillring B (1999) The swedish wood fuel market. Renew Energy 16:1031–1036.

    Article  Google Scholar 

  • Hillring B (2002) Rural development and bioenergy experiences from 20 years of development in sweden. Biomass Bioenergy 23:443–451

    Article  Google Scholar 

  • IEA (2007) International Energy Agency. Key world energy statistics 2007. http://www.iea.org. Accessed 20 May 2008

  • International Energy Agency (2012) World energy outlook 2012. OECD/IEA, Paris, France

    Google Scholar 

  • Jirjis R, Öhman M, Vinterbäck J (2006) Pellets quality effects of raw material properties and manufacturing process parameters. Report No. 14.ISSN 1651-0720. Department of Bioenergy, Uppsala, Sweden

    Google Scholar 

  • Kaliyan N, Morey RV (2009) Factors affecting strength and durability of densified biomass products. Biomass Bioenergy 33:337–359

    Article  CAS  Google Scholar 

  • Kaptay G (2005) Classification and general derivation of interfacial forces, acting on phases, situated in the bulk, or at the interface of other phases. Proceedings of the IV international conference/High temperature capillarity. J Mater Sci 40:2125–2131

    Article  CAS  Google Scholar 

  • Karkania V, Fanara E, Zabaniotou A (2012) Review of sustainable biomass pellets production–a study for agricultural residues pellets’ market in Greece. Renew Sustain Energy Rev 16(3):1426–1436

    Article  Google Scholar 

  • Klass DL (2004) Biomass for renewable energy and fuels. Encyclopedia of energy. Elsevier, Amsterdam

    Google Scholar 

  • Koopmans A, Koppejan J (1998) Agricultural and forest residues—Generation, utilization and availability, Proceedings of the regional expert consultation on modern applications of biomass energy, FAO Regional Wood Energy Development Programme in Asia

    Google Scholar 

  • Kopetz, Heinz (2013) Build a biomass energy market. Nature 494(7435):29–31

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Demirel Y, Jones DD, Milford AH (2010) Optimization and economic evaluation of industrial gas production and combined heat and power generation fromgasification of corn stover and distillers grains. Bioresour Technol 101:3696–3701

    Article  CAS  PubMed  Google Scholar 

  • Laitner JA (2013) An overview of the energy efficiency potential. Environ Innov Soc Transit 9:38–42

    Article  Google Scholar 

  • Larsson SH, Thyrel M, Geladi P, Lestander TA (2008) High quality biofuel pellet production from pre-compacted low density raw materials. Bioresour Technol 99:7176–7182

    Article  CAS  PubMed  Google Scholar 

  • Lehtikangas P (1999) Quality properties of fuel pellets from forest biomass. Licentiate Thesis, Department of Forest Management and Products, Report 4, Uppsala

    Google Scholar 

  • Lehtikangas P (2001) Quality properties of pelletised sawdust, logging residues and bark. Biomass Bioenergy 20:351–360

    Article  Google Scholar 

  • Li JF, Hu RQ (2003) Sustainable biomass production for energy in China. Biomass Bioenergy 25:483–499

    Article  Google Scholar 

  • Ljungblom L (2007) The pellets map-2007. Bioenergy Int 29:9–23

    Google Scholar 

  • Lundborg A (1998) A sustainable forest fuel system in Sweden. Biomass Bioenergy 15(4–5):399–406

    Article  Google Scholar 

  • Mani S, Tabil LG, Sokhansanj S (2004) Evaluation of compaction equations applied to four biomass species. Can Biosyst Eng 46:3.55–3.61

    Google Scholar 

  • Mani S, Sokhansanj S, Bi X, Turhollow A (2006a) Economics of producing fuels pellets from biomass. Appl Eng Agric 22(3):421–426

    Article  Google Scholar 

  • Mani S, Tabil LG, Sokhansanj S (2006b) Effects of compressive force, particle size and moisture content on mechanical properties of biomass pellets from grasses. Biomass Bioenergy 30:648–654

    Article  Google Scholar 

  • Mani S, Tabil LG, Sokhansanj S (2006c) Specific energy requirement for compacting corn stover. Bioresour Technol 97:1420–1426

    Article  CAS  PubMed  Google Scholar 

  • Martinsson L, Österberg S (2004) Pelletering med skogsbränsleochSalixsområvara. (Pelletising using forest residues and salix as raw materials a study of the pelletising properties). Report 876 Värmeforsk, Stockholm, Sweden. (In Swish. Summary in English)

    Google Scholar 

  • Mata TM, Martins AA, Nidia, Caetano S (2010) Microalgae for biodiesel productionand other applications: a review. Renew Sustain Energy Rev 14(1):217–232

    Article  CAS  Google Scholar 

  • Mitchell P, Kiel J, Livingston B, Dupont-Roc G (2007) Torrefi biomass: a foresighting study into the business case for pellets from torrefied biomass as a new solid fuel. All Energy 24:2007

    Google Scholar 

  • Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuel 20:848–889

    Article  CAS  Google Scholar 

  • Nelson DL, Cox MM (2005) Lehninger principles of biochemistry. W. H. Freeman, New York

    Google Scholar 

  • Nixon PMI, Bullard MJ (2001) Is mscanthus suited to the whole of England and Wales? Preliminary studies. In: Aspects of applied biology 65 Biomass and energy crops II. Aspects of Appl Biol 65:91–97

    Google Scholar 

  • Nyanzi FA, Maga JA (1992) Effect of processing temperature on detergent solubilized protein in extrusion-cooked cornstarch/soy protein subunit blends. J Agric Food Chem 40:131–133

    Article  CAS  Google Scholar 

  • Obernberger I, Thek G (2002) Physical characterisation and chemical composition ofdensified biomass fuels with regard to their combustion behaviour. Proceedings of the 1st World conference on pellets, pp 115–122

    Google Scholar 

  • Obernberger I, Thek G (2004) Physical characterisation and chemical composition of densified biomass fuels with regard to their combustion behaviour. Biomass and Bioenergy 27:653–669

    Article  CAS  Google Scholar 

  • Obernberger I, Thek G (2010) The pellet handbook: the production and thermal utilization of biomass pellets. Earth Scan, London

    Google Scholar 

  • Parikka M (2004) Global biomass fuel resources. J Biomass Bioenergy 27:613–620

    Article  Google Scholar 

  • Pattara C, Cappelletti GM, Cichelli A (2010) Recovery and use of olive stones: commodity, environmental and economic assessment. Renew Sustain Energy Rev 14:1484–1489

    Article  CAS  Google Scholar 

  • Pichler W, Greinöcker C, Golser M (2006) Pellet quality optimisation—systematic analysis of influencing factors along the production-process and microwave and H2O2 activation of the raw material. Proceedings of the 2nd World conference on pellets, Pellets 2006. 30 May–1 June, Jönköping, Sweden

    Google Scholar 

  • Pir (2008) The Swedish Association of Pellet Producers. Statistikom pellets I Sverige. (Statistics Concerning Wood Fuel Pellet in Sweden). http://www.pelletsindustrin.org/?p=2510. (In Swedish). Accessed 11 June 2008

  • Pirzadah TB, Malik B, Kumar M, Rehman RU (2014) Lignocellulosic biomass: as future alternative for bioethanol production. In: Hakeem KR et al (eds) Biomass and bioenergy: applications. Springer, Switzerland, pp 145–163

    Chapter  Google Scholar 

  • REN21 (2012) Renewable energy policy network for 21st century. Renewables 2012 global status report, 2012

    Google Scholar 

  • Rhén C, Gref R, Sjöström M, Wästerlund I (2005) Effects of raw material moisture content. Densification pressure and temperature on some properties of Norway spruce pellets. Fuel Process Technol 87:11–16

    Article  Google Scholar 

  • Robles Fernández S MansoRamírez A RamírezFernández A (2009) Biomass fuel trade in Europe country report. Andalusian Energy Agency.Report of EUBionet, Spain, p 24

    Google Scholar 

  • Ryu C, Finney K Sharifi VN, Swithenbank J (2008) Pelletised fuel production from coal tailings and spent mushroom compost Part I, Identification of pelletisation parameters. Fuel Process Technol 89:269–275

    Article  CAS  Google Scholar 

  • Samson R, Duxbury P (2000) Assessment of pelletized biofuels, Resource efficient agricultural production Canada

    Google Scholar 

  • Savolainen V, Berggren H (2000) Wood fuels basic information pack. Jyväskylä, Finland (ISBN 952-5165-19-1)

    Google Scholar 

  • Shambe T, Kennedy JF (1985) Acid and enzymatic hydrolysis of chaotropically pretreated millet stalk, acha and rice straws, and conversion of the products to ethanol. Enzyme Microb Technol 7:115–120

    Article  CAS  Google Scholar 

  • Shankar TJ, Bandyopadhyay S (2006) Scanning electron microscope study of fish and rice flour coextrudates. In: Mendez-Vilas A (ed) Proceeding of modern multidisciplinary applied microbiology exploiting microbes and their interactions. Wiley-VCH, Hoboken, pp 791–795

    Chapter  Google Scholar 

  • Shankar TJ, Sokhansanj S, Bandyopadhyay S, Bawa, AS (2008). A case study on optimization of biomass flow during single-screw extrusion cooking using genetic algorithm (GA) and response surface method (RSM). Food Bioproc Technol. doi:10.1007/s11947-008-0172-9

    Google Scholar 

  • Sikkema R, Junginger HM, Pichler W, Hayes S, Faaij APC (2010) The international logistics of wood pellets for heating and power production in Europe: costs, energy-input and greenhouse gas balances of pellet consumption in Italy, Sweden and the Netherlands. Biofuel Bioprod Biorefin 4(2):132–153

    Article  CAS  Google Scholar 

  • Smith T, Pieter, Martin Junginger H (2011) Analysis of the global production location dynamics in the industrial wood pellet market: an MCDA approach. Biofuel Bioprod Biorefin 5(5):533–547

    Article  CAS  Google Scholar 

  • Sokhansanj S, Tabil L, Yang W (1999) Characteristics of plant tissues to form pellets. Powder handling and processing 11(2):149–159

    Google Scholar 

  • Sokhansanj S, Mani S, Bi X, Zaini P, Tabil L (2005a) Binderless pelletization of biomass. Presented at the ASAE Annual International Meeting, Tampa, FL, ASAE Paper No. 056061. St. Joseph, MI: ASAE. Solo, M. L. 1965. Mattalorest.Aikakawsh 37:127

    Google Scholar 

  • Sokhansanj S, Mani S, Bi X, Zaini P, Tabil L (2005b) Binderless pelletisation of biomass. ASAE, The society for engineering in agricultural, food and biological systems, ASAE Annual International Meeting 17–20 July

    Google Scholar 

  • Solo ML (1965) The constitution of the cambium, the new wood and the mature sapwood of the common ash composition due to development of a gelatinous layer (G-layer). Mattalorest Aikakawsh 37:127–133

    Book  Google Scholar 

  • Stern NH (2007) Stern review: the economics of climate change, executive summary. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Svebio (2004) Biobränsle–uppvärmning för framtiden (“Biofuel – Heating for the Future.”) Fokus Bioenergi, Nr. 7

    Book  Google Scholar 

  • Svebio (2008) Rapport ompotentialenförbioenergi—tillgång—användning. (Report on the Bioenergy Potential—Supply—Usage) The Swedish Bioenergy Association, Stockholm, Sweden. (In Swish)

    Google Scholar 

  • Swedish Energy Agency (2007) Energy in Sweden 2007, ET 2007:49.Swedish Energy Agency. Eskilstuna, Sweden. (In Swish)

    Google Scholar 

  • Tabil LG, Sokhansanj S (1996a) Compression and compaction behavior of alfalfa grinds: Part 1: compression behavior. Powder Handl Process 8(1):7–23

    Google Scholar 

  • Tabil LG Jr, Sokhansanj S (1996b) Process conditions affecting the physical quality of alfalfa pellets. Am Soc Agric Eng 12(3):345–350

    Article  Google Scholar 

  • Tabil LG, Sokhansanj S, Tyler RT (1997) Performance of different binders during alfalfa pelleting. Can Agric Eng 39(1):17–23

    Google Scholar 

  • Tavasoli A, Ahangari MG, Soni C, Dalai AK (2009) Production of hydrogen and syngasvia gasification of the corn and wheat dry distillers grains (DDGS) in a fixed-bed micro reactor. Fuel Process Technol 90:472–482

    Article  CAS  Google Scholar 

  • Thomas M, van Zuilichem DJ, van der Poel AFB (1997) Quality of pelleted animal feed 2.contribution of processes and its conditions. Anim Feed Sci Technol 64, 173–192

    Article  Google Scholar 

  • Thomas M, van Vliet T, van der Poel AFB (1998) Physical quality of pelleted animal feed contribution of feedstuff components. Anim Feed Sci Technol 70:59–78

    Article  CAS  Google Scholar 

  • Thomas M, Huijnen PTHJ, van Vliet T, van Zuilichem DJ, van der Poel AFB (1999) Effects of process conditions during expander processing and pelleting on starch modification and pellet quality of tapioca. J Sci Food Agric 79:1481–1494

    Article  CAS  Google Scholar 

  • Tiffany DG, Morey RV, De Kam MJ (2007) Economics of biomassgasification/combustion at fuel ethanol plants. Appl Eng Agric 25(3):391–400

    Article  Google Scholar 

  • Tomasz G and Zenonin F (2012) Pellet – a Key to Biomass Energy International Journal of Economic Practices and Theories, Vol. 2, No. 4, e-ISSN 2247–7225

    Article  Google Scholar 

  • Tumuluru JS, Tabil L, Opoku A, Mosqueda MR, Fadeyi O (2010) Effect of process variableson the quality characteristics of pelleted wheat distiller’s dried grains with soluble. Biosyst Eng. 105(4):466–475

    Article  Google Scholar 

  • United States Department of Energy (2006) Energy efficiency and renewable energy-biomass program. http://www1.eere.energy.gov/biomass. Accessed April 2010

  • van Dam JEG, van den Oever MJA, Teunissen W, Keijsers ERP, Peralta AG (2004) Process for production of high density/high performance binderless boards from wholecoconut husk. Part 1: lignin as intrinsic thermosetting binder resin. Ind Crop Products 19:207–216

    Article  CAS  Google Scholar 

  • Van Soest PJ (1964) Symposium on nutrition and forage and pastures: new chemical procedures for evaluating forages. J Anim Sci 23:838–845

    Google Scholar 

  • Vassilev SV, Baxter D, Andersen LK, Vassileva C (2010) An overview of the chemical composition of biomass. Fuel 89(5):913–933

    Article  CAS  Google Scholar 

  • Verma M, Godbout S, Brar SK, Solomatnikova O, Lemay SP, Larouche JP (2012) Review article on biofuels production from biomass by thermo-chemical conversion technologies. Int J Chem Eng 2012(542426):18

    Google Scholar 

  • Vesterinen P (2003) Wood ash recycling state of the art in Finland and Sweden. Research Report PRO2/6107/03, VTT, Jyväskylä, Finland

    Google Scholar 

  • Vinterbäck J (2008) Internationellpelletsmarknadsutveckling (International Pellet Market Development) Proceedings of pellets 08, 29 Jan–30 Jan, 2008.Sundsvall, Sweden. (In Swish)

    Google Scholar 

  • WEC (1994) Biomass energy, Chap. 5 in new renewable energy resources—a guide to the future. World Energy Council, London

    Google Scholar 

  • White RH (1987) Effect of lignin content and extractives on the higher heating value of wood. Wood Fiber Sci 19(4):446–452

    CAS  Google Scholar 

  • Wikström F (2007) The potential of energy utilization from loggingresidues with regard to the availability of ashes. Biomass Bioenergy 31(1):40–45

    Article  Google Scholar 

  • Wood JF (1987) The functional properties of feed raw materials and the effect on the production and quality of feed pellets. Anim Feed Sci Technol 18:1–17

    Article  Google Scholar 

  • Zandersons J, Gravitis J, Zhurinsh A, Kokorevics A, Kallavus U, Suzuki CK (2004) Carbon materials obtained from self-binding sugar cane bagasse and deciduous woodresidues plastics. Biomass Bioenergy 26:345–360

    Article  CAS  Google Scholar 

  • Zeng XY, Ma YT, Ma LR (2007) Utilization of straw in biomass energy in China. Renew Sust Energy Revis 11:976–987

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reiaz ul Rehman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Malik, B., Pirzadah, T., Islam, S., Tahir, I., Kumar, M., Rehman, R. (2015). Biomass Pellet Technology: A Green Approach for Sustainable Development. In: Hakeem, K., Jawaid, M., Y. Alothman, O. (eds) Agricultural Biomass Based Potential Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-13847-3_19

Download citation

Publish with us

Policies and ethics