Skip to main content

Algae-Derived Biomass for Sustainable and Renewable Biofuel Production

  • Chapter
  • First Online:
Book cover Agricultural Biomass Based Potential Materials

Abstract

The rapid increase in demand for energy efficiency and sustainability in recent years, the ecofriendly and renewable sources of energy have taken the center stage by replacing the fossil-based energy resources as they associated with serious environmental and health-related issues. These negative factors ignite to rethink and global shift towards a more carbon-neutral source of energy that is biodegradable, sustainable, and ecofriendly. Agro-based materials from crops and post-harvest residues are currently being explored to meet these challenges as primary feedstock for the production of ethanol, agrochemicals, and biodiesel. However, the cultivation of oilseed crops and other cash crops essentially for biodiesel production will avertedly water down on food supply and security and thus we report in this chapter an ideal alternative source of energy derived from microalgae that hold great promise for the future. Cultivation of microalgae will not compete with food productions and fodder demands, can be cultivated anywhere, will not compete with arable land, has simple growth cycle that can produce lipids all year-round under short period of time requiring less water, and has metabolic pathways that establish atmospheric carbon-neutral effect and balance. With this, the aim of the current chapter is to discuss the potentials of microalgae as third-generation energy source, focusing basically on simple taxonomy, lipid biosynthesis, and various cultivation methods. We also reviewed some simple principles used for the optimization of lipid content in microalgae under various lipid-induction techniques and a brief look into the biosequestration characteristics of microalgae. Furthermore, various methods involved in harvesting and extraction of lipid from microalgae and the chemistry for the conversion of lipid extracted from microalgae into biodiesel following simple transesterification process are equally touched at the surface in this chapter. Based on the aforementioned, this chapter comes to conclusion elucidating algae lipid metabolism and production as key fundamentals to consider towards achieving the most desired global energy demand that is sustainable and ecofriendly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal A, Gopal K (2014) Climate change and its effect on flora and fauna. Climate Change Environ Sust 2:30–38.

    Google Scholar 

  • Aguilera RF, Eggert RG, Lagos GC, Tilton JE (2009) Depletion and the future availability of petroleum resources. Energy J 30:141–174

    Google Scholar 

  • Alcaine AA (2010) Biodiesel from microalgae. Universitat Politècnica de Catalunya. Escola Universitària d'Enginyeria Tècnica Industrial d'Igualada, 2010 (ET Industrial, especialitat en Química Industrial)

    Google Scholar 

  • Aleklett K, Höök M, Jakobsson K, Lardelli M, Snowden S, Söderbergh B (2010) The peak of the oil age–analyzing the world oil production reference scenario in world energy outlook 2008. Energy Policy 38:1398–1414

    Google Scholar 

  • Alonso DL, Belarbi EH, Fernández-Sevilla JM, Rodríguez-Ruiz J, Grima EM (2000) Acyl lipid composition variation related to culture age and nitrogen concentration in continuous culture of the microalga Phaeodactylum tricornutum. Phytochemistry 54:461–471

    CAS  PubMed  Google Scholar 

  • Andersson MX, Stridh MH, Larsson KE, Liljenberg C, Sandelius AS (2003) Phosphate-deficient oat replaces a major portion of the plasma membrane phospholipids with the galactolipid digalactosyldiacylglycerol. FEBS Lett 537:128–132

    CAS  PubMed  Google Scholar 

  • Azachi M, Sadka A, Fisher M, Goldshlag P, Gokhman I, Zamir A (2002) Salt induction of fatty acid elongase and membrane lipid modifications in the extreme halotolerant alga Dunaliella salina. Plant Physiol 129:1320–1329

    PubMed Central  CAS  PubMed  Google Scholar 

  • Becker EW (1994) Microalgae: biotechnology and microbiology, vol. 10. Cambridge University Press, Cambridge

    Google Scholar 

  • Bilanovic D, Andargatchew A, Kroeger T, Shelef G (2009) Freshwater and marine microalgae sequestering of CO at different C and N concentrations–Response surface methodology analysis. Energy Conver Manage 50:262–267

    CAS  Google Scholar 

  • Bolin B, Döös BR, Jäger J, Warrick RA (1986) The greenhouse effect, climatic change and ecosystems. Scope 29, John Wiley and sons, Chichester, UK

    Google Scholar 

  • Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, and fermenters. Prog Ind Microbiol 35:313–321

    Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energy Rev 14:557

    CAS  Google Scholar 

  • Brewer WJ (2013) Induction of microalgal lipids for biodiesel production in tandem with sequestration of high carbon dioxide concentration. Master thesis, Michigan technology university. http://digitalcommons.mtu.edu/etds/457. Accessed 17 July 2014

  • Brookman G, James S (1974) Mechanism of cell disintegration in a high pressure homogenizer. Biotech Bioengergy 16:371–383

    Google Scholar 

  • Brown RC, Brown TR (2014) Biorenewable resources: engineering new products from agriculture, 2nd edn. Wiley-Blackwell, Iowa state press, Ames, Iowa.

    Google Scholar 

  • Brown MR, Dunstan GA, Norwood S, Miller KA (1996) Effects of harvest stage and light on the biochemical composition of the diatom thalassiosira pseudonana1. J Phycol 32:64–73

    CAS  Google Scholar 

  • Burrows EM (1991) Seaweeds of the British Isles: Chlorophyta, vol. 2. Natural History Museum Publications

    Google Scholar 

  • Campbell MN (2008) Biodiesel: algae as a renewable source for liquid fuel. Guelph Eng J 1:2–7

    Google Scholar 

  • Casey R, Lubitz J (1963) Algae as food for space travel: a review. Food Technol 17: 48–56

    Google Scholar 

  • Chen YF, Wu Q (2011) Production of biodiesel from algal biomass: current perspectives and future. Biofuels 399:101–122

    Google Scholar 

  • Chen GQ, Jiang Y, Chen F (2008) Salt induced alterations in lipid composition of Diatom Nitzschia Laevis (Bacillariophyceae) under heterotrophic culture condition. J Phycol 44:1309–1314

    CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    CAS  PubMed  Google Scholar 

  • Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:126–131

    CAS  PubMed  Google Scholar 

  • Chisti Y, Moo-Young M (1986) Disruption of microbial cells for intracellular products. Enzyme Microbial Technol 8:194–204

    CAS  Google Scholar 

  • Chiu SY, Kao CY, Tsai MT, Ong SC, Chen CH, Lin CS (2009) Lipid accumulation and CO utilization of Nannochloropsis oculata in response to CO aeration. Bioresour Technol 100:833–838

    CAS  PubMed  Google Scholar 

  • Clark JH, Deswarte F (2008) Introduction to chemicals from biomass, vol 14. John Wiley and sons, Chichester, West Sussex, UK, 198p

    Google Scholar 

  • Cooney M, Young G, Nagle N (2009) Extraction of bio-oils from microalgae. Separat Purificat Rev 38:291–325

    CAS  Google Scholar 

  • Cravotto G, Boffa L, Mantegna S, Perego P, Avogadro M, Cintas P (2008) Improved extraction of vegetable oils under high-intensity ultrasound and/or microwaves. Ultrason Sonochem 15:898–902

    CAS  PubMed  Google Scholar 

  • Da Costa ACA, Junior NP, Aranda DAG (2010) The situation of biofuels in Brazil: new generation technologies. Renew Sust Energy Rev 14:3041–3049

    Google Scholar 

  • de-Bashan LE, Bashan Y (2010) Immobilized microalgae for removing pollutants: review of practical aspects. Bioresour Technol 101:1611–1627

    CAS  PubMed  Google Scholar 

  • Desmorieux H, Decaen N (2005) Convective drying of spirulina in thin layer. J Food Eng 66:497–503

    Google Scholar 

  • Dincer I (2000) Renewable energy and sustainable development: a crucial review. Renew Sust Energy Rev 4:157–175

    Google Scholar 

  • Dismukes GC, Carrieri D, Bennette N, Ananyev GM, Posewitz MC (2008) Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Curr Opin Biotechnol 19:235–240

    CAS  PubMed  Google Scholar 

  • Dissa A, Desmorieux H, Savadogo P, Segda B, Koulidiati J (2010) Shrinkage, porosity and density behaviour during convective drying of spirulina. J Food Eng 97:410–418

    Google Scholar 

  • Doman LE (2013) International energy outlook 2013: US energy information administration: Washington

    Google Scholar 

  • Dongre SK, Manglawat S, Singh P, Yadav M, Tiwari A (2014) Effect of environmental parameters enhancing the micro algal lipid as a sustainable energy source for biodiesel production-areview. Int J Phytopharmacol 5:327–335

    Google Scholar 

  • Doucha J, Lívanský K (2008) Influence of processing parameters on disintegration of chlorella cells in various types of homogenizers. Appl Microbiol Biotechnol 81:431–440

    CAS  PubMed  Google Scholar 

  • Falkowski PG, Raven JA (2007) Aquatic photosynthesis.Princeton University Press, New Jersy, USA

    Google Scholar 

  • Felix H (1982) Permeabilized cells. Anal Biochem 120:211–234

    CAS  PubMed  Google Scholar 

  • Foglia TA, Nelson LA, Dunn RO, Marmer WN (1997) Low-temperature properties of alkyl esters of tallow and grease. J Am Oil Chem Soc 74:951–955

    CAS  Google Scholar 

  • Follows M, Hetherington P, Dunnill P, Lilly M (1971) Release of enzymes from bakers’ yeast by disruption in an industrial homogenizer. Biotech Bioengergy 13:549–560

    CAS  Google Scholar 

  • Fork DC, Murata N, Sato N (1979) Effect of growth temperature on the lipid and fatty acid composition, and the dependence on temperature of light-induced redox reactions of cytochrome f and of light energy redistribution in the thermophilic blue-green alga Synechococcus lividus. Plant Physiol 63:524–530

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fukuda H, Kondo A, Noda H (2001) Biodiesel fuel production by transesterification of oils. J Biosci Bioeng 92:405–416

    CAS  PubMed  Google Scholar 

  • Gouveia L, Oliveira AC (2009) Microalgae as a raw material for biofuels production. J IndusMicrobiol Biotechnol 36:269–274

    CAS  Google Scholar 

  • Greenwell H, Laurens L, Shields R, Lovitt R, Flynn K (2010) Placing microalgae on the biofuels priority list: a review of the technological challenges. J R Soc Interface 7:703–726

    PubMed Central  CAS  PubMed  Google Scholar 

  • Griffiths MJ, Harrison ST (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507

    CAS  Google Scholar 

  • Guckert JB, Cooksey KE (1990) Triglyceride accumulation and fatty acid profile changes in Chlorella (Chlorophyta) during high pH-induced cell cycle inhibition. J Phycol 26:72–79

    CAS  Google Scholar 

  • Guiry MD (2012) How many species of algae are there? J Phycol 48:1057–1063

    Google Scholar 

  • Guschina IA, Harwood JL (2006) Lipids and lipid metabolism in eukaryotic algae. Prog Lipid Res 45:160–186

    CAS  PubMed  Google Scholar 

  • Haag AL (2007) Algae bloom again. Nature 447:520–521

    CAS  PubMed  Google Scholar 

  • Hanotu J, Bandulasena HCH, Zimmerman WB (2012) Microflotation performance for algal separation. Biotechnol Bioeng 109:1663–1673

    CAS  PubMed  Google Scholar 

  • Härtel H, Dörmann P, Benning C (2000) DGD1-independent biosynthesis of extraplastidic galactolipids after phosphate deprivation in Arabidopsis. Proc Natl Acad Sci USA 97:10649–10654

    PubMed Central  PubMed  Google Scholar 

  • Harwood JL, Jones AL (1989) Lipid metabolism in algae. Adv Bot Res 16:1–53

    CAS  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    CAS  PubMed  Google Scholar 

  • Janssen M, Tramper J, Mur LR., Wijffels RH (2003) Enclosed outdoor photobioreactors: light regime, photosynthetic efficiency, scale up, and future prospects. Biotechnol Bioeng 81:193–210

    CAS  PubMed  Google Scholar 

  • Jeong ML, Gillis JM, Hwang JY (2003) Carbon dioxide mitigation by microalgal photosynthesis. Bull Korean Chem Soc 24:1763–1766

    CAS  Google Scholar 

  • Jiang Y, Chen F (1999) Effects of salinity on cell growth and docosahexaenoic acid content of the heterotrophic marine microalga Crypthecodinium cohnii. J Indus Microbiol Biotechnol 23:508–513

    CAS  Google Scholar 

  • Khan SA, Rashmi, Hussain MZ, Prasad S, Banerjee U (2009) Prospects of biodiesel production from microalgae in India. Renew Sust Energy Rev 13:2361–2372

    CAS  Google Scholar 

  • Krisnangkura K (1986) A simple method for estimation of cetane index of vegetable oil methyl esters. J Am Oil Chem Soc 63:552–553

    CAS  Google Scholar 

  • Lang I, Hodac L, Friedl T, Feussner I (2011) Fatty acid profiles and their distribution patterns in microalgae: a comprehensive analysis of more than 2000 strains from the SAG culture collection. BMC Plant Biol 11:124 (16 pp)

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lewis MJ, Nichols BJ, Prescianotto-Baschong C, Riezman H, Pelham HR (2000) Specific retrieval of the exocytic SNARE Snc1p from early yeast endosomes. Mol Biol Cell 11:23–38

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liu ZY, Wang GC, Zhou BC (2008) Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresour Technol 99:4717–4722

    CAS  PubMed  Google Scholar 

  • Lobban CS, Wynne MJ (1981) The biology of seaweeds, vol. 17. University of California Press, California

    Google Scholar 

  • Lv JM, Cheng LH, Xu XH, Zhang L, Chen HL (2010) Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions. Bioresour Technol 101:6797–6804

    CAS  PubMed  Google Scholar 

  • Lynch DV, Thompson GA (1982) Low temperature-induced alterations in the chloroplast and microsomal membranes of Dunaliella salina. Plant Physiol 69:1369–1375

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energy Rev 14:217–232

    CAS  Google Scholar 

  • Mercer P, Armenta RE (2011) Developments in oil extraction from microalgae. Eur J Lipid Sci Technol 113:539–547

    CAS  Google Scholar 

  • Miao X, Wu Q (2004) High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. J Biotechnol 110:85–93

    CAS  PubMed  Google Scholar 

  • Milledge JJ, Heaven S (2013) A review of the harvesting of micro-algae for biofuel production. Rev Environ Sci Biotechnol 12:165–178

    Google Scholar 

  • Molina Grima E, Belarbi EH, Acién Fernández F, Robles Medina A, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515

    CAS  PubMed  Google Scholar 

  • Muller-Feuga A, Le Guédes R, Hervé A, Durand P (1998) Comparison of artificial light photobioreactors and other production systems using Porphyridium cruentum. J Appl Phycol 10:83–90

    Google Scholar 

  • Munir N, Sharif N, Shagufta N, Saleem F, Manzoor F (2013) Harvesting and processing of microalgae biomass fractions for biodiesel production (a review). Sci Tech Dev 32: 235–243

    Google Scholar 

  • Nagaich V, Dongre SK, Singh P, Yadav M, Tiwari A (2014) Maximum-CO2 tolerance in microalgae: possible mechanisms and higher lipid accumulation. Int J Adv Res 2:101–106

    Google Scholar 

  • Naglak TJ, Hettwer DJ, Wang HY (1990) Chemical permeabilization of cells for intracellular product release. Bioprocesses Technol 9:177–205

    CAS  Google Scholar 

  • Orcutt DM, Patterson GW (1974) Effect of light intensity upon lipid composition of Nitzschia closterium (Cylindrotheca fusiformis). Lipids 9:1000–1003

    CAS  Google Scholar 

  • Palmer JD, Soltis DE, Chase MW (2004) The plant tree of life: an overview and some points of view. Am J Bot 91:1437–1445

    PubMed  Google Scholar 

  • Perlack RD, Wright LL, Turhollow AF, Graham RL, Stokes BJ, Erbach DC (2005) Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply: DTIC Document. US Department of Energy. http://web.ornl.gov/~webworks/cppr/y2001/rpt/123021.pdf. Accessed 17 July 2014

  • Popoola T, Yangomodou O (2006) Extraction, properties and utilization potentials of cassava seed oil. Biotechnology 5:38–41

    CAS  Google Scholar 

  • Prakash J, Pushparaj B, Carlozzi P, Torzillo G, Montaini E, Materassi R (1997) Microalgal biomass drying by a simple solar device. Int J Solar Energy 18:303–311

    Google Scholar 

  • Pyörälä P, Peltola H, Strandman H, Antti K, Antti A, Jylhä K, Kellomäki S (2014) Effects of management on economic profitability of forest biomass production and carbon neutrality of bioenergy use in Norway spruce stands under the changing climate. Bioenergy Res 7:279–294

    Google Scholar 

  • Rakopoulos C, Antonopoulos K, Rakopoulos D, Hountalas D, Giakoumis E (2006) Comparative performance and emissions study of a direct injection diesel engine using blends of diesel fuel with vegetable oils or bio-diesels of various origins. Energy Conver Manage 47:3272–3287

    CAS  Google Scholar 

  • Reitan KI, Rainuzzo JR, Olsen Y (1994) Effect of nutrient limitation on fatty acid and lipid content of marine microalgae. J Phycol 30:972–979

    CAS  Google Scholar 

  • Renaud SM, Thinh LV, Lambrinidis G, Parry DL (2002) Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture 211:195–214

    CAS  Google Scholar 

  • Rodolfi L, Chini GZ, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low- cost photobioreactor. Biotechnol Bioeng 102:100–112

    CAS  PubMed  Google Scholar 

  • Round FE (1984) The ecology of algae. Cambridge university press, Cambridge

    Google Scholar 

  • Sahoo D, Elangbam G, Devi SS (2012) Using algae for carbon dioxide capture and biofuel production to combat climate change. Phykos 42:32–38

    Google Scholar 

  • Sakthivel R (2011) Microalgae lipid research, past, present: a critical review for biodiesel production in the future. J Exp Sci 2:29–49

    Google Scholar 

  • Sato N, Murata N (1980) Temperature shift-induced responses in lipids in the blue-green alga, Anabaena variabilis: the central role of diacylmonogalactosylglycerol in thermo-adaptation. Biochim Biophys Acta 619:353–366

    CAS  PubMed  Google Scholar 

  • Sato N, Hagio M, Wada H, Tsuzuki M (2000) Environmental effects on acidic lipids of thylakoid membranes. Biochem Soc Trans 28:912–914

    CAS  PubMed  Google Scholar 

  • Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1:20–43

    Google Scholar 

  • Schuhmann H, Lim DK, Schenk PM (2012) Perspectives on metabolic engineering for increased lipid contents in microalgae. Biofuels 3:71–86

    CAS  Google Scholar 

  • Searchinger TD, Hamburg SP, Melillo J, Chameides W, Havlik P, Kammen DM, Oppenheimer M (2009) Climate change. Fixing a critical climate accounting error. Science 326:527–528

    CAS  PubMed  Google Scholar 

  • Sharma KK, Schuhmann H, Schenk PM (2012) High lipid induction in microalgae for biodiesel production. Energies 5:1532–1553

    CAS  Google Scholar 

  • Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv 27:409–416

    CAS  PubMed  Google Scholar 

  • Siegenthaler PA, Murata N (1998) Lipids in photosynthesis: Structure, function, and genetics. Advance in Photosynthesis and Respiration, vol 6. Kluwer Academic Publisher, Springer Netherlands, pp 1–20

    Google Scholar 

  • Sieminski A (2013) International energy outlook 2013. Center for Strategic and International Studies, Tech. Rep

    Google Scholar 

  • Sobczuk TM, Camacho FG, Rubio FC, Fernández F, Grima EM (2000) Carbon dioxide uptake efficiency by outdoor microalgal cultures in tubular airlift photobioreactors. Biotechnol Bioeng 67: 465–475

    CAS  Google Scholar 

  • Somerville C (1995) Direct tests of the role of membrane lipid composition in low-temperature-induced photoinhibition and chilling sensitivity in plants and cyanobacteria. Proc Natl Acad Sci USA 92:6215–6218

    PubMed Central  CAS  PubMed  Google Scholar 

  • Srivastava A, Prasad R (2000) Triglycerides-based diesel fuels. Renew Sust Energy Rev 4:111–133

    CAS  Google Scholar 

  • Stepan DJ, Shockey RE, Moe TA, Dorn R (2002) Carbon dioxide sequestering using microalgal systems. doi:10.2172/882000

    Google Scholar 

  • Stephens E, Ross IL, Mussgnug JH, Wagner LD, Borowitzka MA, Posten C, Hankamer B (2010) Future prospects of microalgal biofuel production systems. Trends Plant Sci 15:554–564

    CAS  PubMed  Google Scholar 

  • Suh IS, Lee CG (2003) Photobioreactor engineering: design and performance. Biotechnol Bioprocess Eng 8:313–321

    CAS  Google Scholar 

  • Tariyal K, Bartwal DM, Bartwal S (2013) Algal biofuel: a symbol of sustainability in the developmental era. Sch Acad J Biosci 1:192–197

    Google Scholar 

  • Tatsuzawa H, Takizawa E (1995) Changes in lipid and fatty acid composition of Pavlova lutheri. Phytochemistry 40:397–400

    CAS  Google Scholar 

  • Tatsuzawa H, Takizawa E, Wada M, Yamamoto Y (1996) Fatty acid and lipid composition of the acidophilic green alga Chlamydomonas sp. J Phycology 32:598–601

    CAS  Google Scholar 

  • Teweldemedhin M, Mwewa L (2014) Bio fuel production and its implication on food security: case study from Zambia. Afr J Agric Res 9:577–587

    Google Scholar 

  • Thompson Jr GA (1996) Lipids and membrane function in green algae. Biochimica Biophys Acta 1302:17–45

    Google Scholar 

  • Tilman D, Hill J, Lehman C (2006) Carbon-negative biofuels from low-input high-diversity grassland biomass. Science 314:1598–1600

    CAS  PubMed  Google Scholar 

  • Vandamme D (2013) Flocculation based harvesting processes for microalgae biomass production. Doctural Dissertation submitted to KU Leuven, Faculty of Bioscience Engineering, Belgium

    Google Scholar 

  • Vicente G, Martinez M, Aracil J (2007) Optimisation of integrated biodiesel production. Part I. a study of the biodiesel purity and yield. Bioresour Technol 98:1724–1733

    CAS  PubMed  Google Scholar 

  • Wältermann M, Steinbüchel A (2005) Neutral lipid bodies in prokaryotes: recent insights into structure, formation, and relationship to eukaryotic lipid depots. J Bacteriol 187:3607–3619

    PubMed Central  PubMed  Google Scholar 

  • Wang B, Li Y, Wu N, Lan CQ (2008) CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol 79:707–718

    CAS  PubMed  Google Scholar 

  • Welsh DT, Bartoli M, Nizzoli D, Castaldelli G, Riou SA, Viaroli P (2000) Denitrification, nitrogen fixation, community primary productivity and inorganic-N and oxygen fluxes in an intertidal Zostera noltii meadow. Marine Ecol Prog Series 208:65–77

    Google Scholar 

  • Widjaja A, Chien CC, Ju YH (2009) Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. J Taiwan Inst Chem Eng 40:13–20

    CAS  Google Scholar 

  • Wiley PE, Brenneman KJ, Jacobson AE (2009) Improved algal harvesting using suspended air flotation. Water Environ Res 81:702–708

    CAS  PubMed  Google Scholar 

  • Williams PJlB (2007). Biofuel: microalgae cut the social and ecological costs. Nature 450:478–478

    CAS  PubMed  Google Scholar 

  • Williams PJlB, Laurens LM (2010) Microalgae as biodiesel & biomass feedstocks: review & analysis of the biochemistry, energetics & economics. Energy Environ Sci 3:554–590

    CAS  Google Scholar 

  • Xin L, Hong-ying H, Ke G, Ying-xue S (2010) Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour Technol 101:5494–5500

    CAS  PubMed  Google Scholar 

  • Xu H, Miao X, Wu Q (2006) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126:499–507

    CAS  PubMed  Google Scholar 

  • Zhu C, Lee Y, Chao T (1997) Effects of temperature and growth phase on lipid and biochemical composition of Isochrysis galbana TK. J Appl Phycol 9:451–457

    CAS  Google Scholar 

  • Zhu M, Zhou P, Yu L (2002) Extraction of lipids from Mortierella alpina and enrichment of arachidonic acid from the fungal lipids. Bioresour Technol 84:93–95

    CAS  PubMed  Google Scholar 

  • Zhu L, Zhang X, Ji L, Song X, Kuang C (2007) Changes of lipid content and fatty acid composition of Schizochytrium limacinum in response to different temperatures and salinities. Process Biochem 42:210–214

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Faruq .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bwatanglang, I., Faruq, M., Gupta, A., Yusof, N. (2015). Algae-Derived Biomass for Sustainable and Renewable Biofuel Production. In: Hakeem, K., Jawaid, M., Y. Alothman, O. (eds) Agricultural Biomass Based Potential Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-13847-3_16

Download citation

Publish with us

Policies and ethics