Skip to main content

Characterization and Use of Coir, Almond, Apricot, Argan, Shells, and Wood as Reinforcement in the Polymeric Matrix in Order to Valorize These Products

  • Chapter
  • First Online:
Agricultural Biomass Based Potential Materials

Abstract

The natural resource materials have an exceptional potential as reinforcement in plastic composites, due to their low cost, good mechanical properties, and biodegradability. This chapter is related to the use of some natural resources (nutshells residues) and their effect on polymer composite with varying filler reinforcement content and type or improving the adhesion between polymer matrix and filler. In this study, the used natural resources as bio-filler were almond shells, coir shells, argan shells, apricot shells, wood powder, and the mixture of these fillers, reinforcing thermoplastic polymer at various filler content (5, 10, and 20 wt.%), through extrusion and injection molding processes. The chemical and physical properties of the bio-filler and bio-filler/polymer composites were defined by using Fourier transform infrared spectroscopy (FT-IR); thermogravimetric analysis (TGA); differential scanning calorimetry (DSC); and tensile, torsional, and rheological tests. Depending on the bio-filler type, there was evidence that some particular difference in the chemical exists and also physical property changes. An increase in the crystallinity of composites is explained by the nucleating agent role of the bio-filler. The thermal, mechanical, and rheological properties of the composites were mostly enhanced with the addition of bio-fillers compared to the neat polymer matrix, and optimal properties were reached. Also, some optimal properties were observed when enhancing the interfacial adhesion by using a coupling agent. As a result, good final properties of the composites were manufactured with low cost. However, a fundamental understanding of the bio-filler structure and chemical composition could be beneficial to reach their full industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arrakhiz FZ, El Achaby M, Benmoussa K, Bouhfid R, Essassi M, Qaiss A (2012a) Evaluation of mechanical and thermal properties of Pine cone fibers reinforced compatibilized polypropylene. Mater Des 40:528–535

    Article  CAS  Google Scholar 

  • Arrakhiz FZ, El Achaby M, Kakou AC, Vaudreuil S, Benmoussa K, Bouhfid R, Fassi-Fehri O, Qaiss A (2012b) Mechanical properties of high density polyethylene reinforced with chemically modified coir fibers: impact of chemical treatments. Mater Des 37:379–383

    Article  CAS  Google Scholar 

  • Arrakhiz FZ, Elachaby M, Bouhfid R, Vaudreuil S, Essassi M, Qaiss A (2012c) Mechanical and thermal properties of polypropylene reinforced with Alfa fiber under different chemical treatment. Mater Des 35:318–322

    Article  CAS  Google Scholar 

  • Arrakhiz FZ, Benmoussa K, Bouhfid R, Qaiss A (2013a) Pine cone fiber/clay hybrid composite: mechanical and thermal properties. Mater Des 50:376–381

    Article  CAS  Google Scholar 

  • Arrakhiz FZ, Malha M, Bouhfid R, Benmoussa K, Qaiss A (2013b) Tensile, flexural and torsional properties of chemically treated alfa, coir and bagasse reinforced polypropylene. Compos Part B Eng 47:35–41

    Article  CAS  Google Scholar 

  • Arrakhiz FZ, El Achaby M, Malha M, Bensalah MO, Fassi-Fehri O, Bouhfid R, Benmoussa K, Qaiss A (2013c) Mechanical and thermal properties of natural fibers reinforced polymer composites: Doum/low density polyethylene. Mater Des 43:200–205

    Article  CAS  Google Scholar 

  • Ayrilmis N, Kaymakci A (2013) Fast growing biomass as reinforcing filler in thermoplastic composites: Paulownia elongata wood. Ind Crop Prod 43:457–464

    Article  CAS  Google Scholar 

  • Boujmal R, Essabir H, Nekhlaoui S, Bensalah MO, Bouhfid R, Qaiss A (2014) Composite from Polypropylene and Henna fiber: structural, mechanical and thermal properties. J Biobas Mater Bioenergy 8:246–252

    Article  CAS  Google Scholar 

  • Dehghani A, Ardekani SM, Al-Maadeed MA, Azman H, Wahit MU (2013) Mechanical and thermal properties of date palm leaf fiber reinforced recycled poly (ethylene terephthalate) composites. Mater Des 52:841–848

    Article  CAS  Google Scholar 

  • Demiral I, Kul SC (2014) Pyrolysis of apricot kernel shell in a fixed-bed reactor: characterization of bio-oil and char. J Anal Appl Pyrol 107:17–24

    Article  CAS  Google Scholar 

  • Elkhaoulani A, Arrakhiz FZ, Benmoussa K, Bouhfid R, Qaiss A (2013) Mechanical and thermal properties of polymer composite based on natural fibers: moroccan hemp fibers/polypropylene. Mater Des 49:203–208

    Article  CAS  Google Scholar 

  • Essabir H, Elkhaoulani A, Benmoussa K, Bouhfid R, Arrakhiz FZ, Qaiss A (2013a) Dynamic mechanical thermal behavior analysis of doum fibers reinforced polypropylene composites. Mater Des 41:780–788

    Article  Google Scholar 

  • Essabir H, Hilali E, Elgharad A, El Minor H, Imad A, Elamraoui A, Al Gaoudi O (2013b) Mechanical and thermal properties of bio-composites based on polypropylene reinforced with Nut-shells of Argan particles. Mater Des 49:442–448

    Article  CAS  Google Scholar 

  • Essabir H, Nekhlaoui S, Malha M, Bensalah MO, Arrakhiz FZ, Qaiss A, Bouhfid R (2013c) Bio-composites based on polypropylene reinforced with almond shells particles: mechanical and thermal properties. Mater Des 51:225–230

    Article  CAS  Google Scholar 

  • Essabir H, Bensalah MO, Bouhfid R, Qaiss A (2014) Fabrication and characterization of Apricot shells particles reinforced high density polyethylene based bio-composites: mechanical and thermal properties. J Biobas Mater Bioenergy 8:344–351

    Article  CAS  Google Scholar 

  • Etaati A, Pather S, Fang Z, Wang H (2014) The study of fibre/matrix bond strength in short hemp polypropylene composites from dynamic mechanical analysis. Compos Part B Eng 62:19–28

    Article  CAS  Google Scholar 

  • Gamon G, Evon PH, Rigal L (2013) Twin-screw extrusion impact on natural fibre morphology and material properties in poly(lactic acid) based biocomposites. Ind Crop Prod 46:173–185

    Article  CAS  Google Scholar 

  • Hao A, Zhao H, Chen JY (2013) Kenaf/polypropylene nonwoven composites: the influence of manufacturing conditions on mechanical, thermal, and acoustical performance. Compos Part B 54:44–51

    Article  CAS  Google Scholar 

  • Harhar H, Gharby S, Kartah B, Pioch D, Guillaume D, Charrouf Z (2014) Effect of harvest date of Argania spinosa fruits on Argan oil quality. Ind Crop Prod 56:156–159

    Article  CAS  Google Scholar 

  • Herrera R, Erdocia X, Llano-Ponte R, Labidi J (2014) Characterization of hydrothermally treated wood in relation to changes on its chemical composition and physical properties. J Anal Appl Pyrol 107:256–266

    Article  CAS  Google Scholar 

  • Holt GA, Chow P, Wanjura JD, Pelletier MG, Wedegaertner TC (2014) Evaluation of thermal treatments to improve physical and mechanical properties of bio-composites made from cotton byproducts and other agricultural fibers. Ind Crop Prod 52:627–632

    Article  CAS  Google Scholar 

  • Huu Nam T, Ogihara S, Huy Tung N, Kobayashi S (2011) Effect of alkali treatment on interfacial and mechanical properties of coir fiber reinforced poly (butylenes succinate) biodegradable composites. Compos Part B Eng 42(6):1648–1656

    Article  Google Scholar 

  • ISO 527–1 (2012) Plastics—determination of tensile properties—part 1: general principles

    Google Scholar 

  • Kuciel S, Jakubowska P, Kuzniar P (2014) A study on the mechanical properties and the influence of water uptake and temperature on biocomposites based on polyethylene from renewable sources. Compos Part B Eng 64:72–77

    Article  CAS  Google Scholar 

  • Luo X, Li J, Feng J, Yang T, Lin X (2014) Mechanical and thermal performance of distillers grains filled poly(butylene succinate) composites. Mater Design 57:195–200

    Article  CAS  Google Scholar 

  • Malha M, Nekhlaoui S, Essabir H, Benmoussa K, Bensalah M-O, Arrakhiz F-Z, Bouhfid R, Qaiss A (2013) Mechanical and thermal properties of compatibilized polypropylene reinforced by Woven Doum. J Appl polym Sci 130(6):4347–4356

    CAS  Google Scholar 

  • Mir SS, Nafsin N, Hasan M, Hasan N, Hassan A (2013) Improvement of physico-mechanical properties of coir-polypropylene biocomposites by fiber chemical treatment. Mater Des 52:251–257

    Article  CAS  Google Scholar 

  • Mirmehdi M, Zeinaly F, Dabbagha F (2014) Date palm wood flour as filler of linear low-density polyethylene. Compos Part B Eng 56:137–141

    Article  CAS  Google Scholar 

  • Najafi SK (2013) Use of recycled plastics in wood plastic composites—a review. Waste Manag 33:1898–1905

    Article  Google Scholar 

  • Nekhlaoui S, Essabir H, Kunal D, Sonakshi M, Bensalah MO, Bouhfid R, Qaiss A (2014a) Comparative study for the talc and two kinds of Moroccan clay as reinforcements in polypropylene-SEBS-g-MA matrix. Polym Compos. doi: 10.1002/pc.22986

    Google Scholar 

  • Nekhlaoui S, Essabir H, Bensalah MO, Fassi-Fehri O, Qaiss A, Bouhfid R (2014b) Fracture study of the composite using essential work of fracture method: PP–SEBS–g–MA/E1 clay. Mater Des 53:741–748

    Article  CAS  Google Scholar 

  • Ou R, Xie Y, Wolcott MP, Sui S, Wang Q (2014) Morphology, mechanical properties, and dimensional stability of wood particle/high density polyethylene composites: effect of removal of wood cell wall composition. Mater Des 58:339–345

    Article  CAS  Google Scholar 

  • Parparita E, Darie RN, Popescu C-M, Uddin Md A, Vasile C (2014) Structure–morphology–mechanical properties relationship of some polypropylene/lignocellulosic composites. Mater Des 56:763–772

    Article  CAS  Google Scholar 

  • Pérez E, Famá L, Pardo SG, Abad MJ, Bernal C (2012) Tensile and fracture behaviour of PP/wood flour composites. Compos Part B Eng 43:2795–2800

    Article  Google Scholar 

  • Qaiss A, Bousmina M (2011) Biaxial stretching of polymers using a novel and versatile stretching system. Polym Eng Sci 51:1347–1353

    Article  CAS  Google Scholar 

  • Qaiss A, Saidi H, Fassi-Fehri O, Bousmina M (2012) Cellular polypropylene-based piezoelectric films. Polym Eng Sci 52:2637–2644

    Article  CAS  Google Scholar 

  • Qaiss A, Saidi H, Fassi-Fehri O, Bousmina M (2013) Theoretical modeling and experiments on the piezoelectric coefficient in cellular polymer films. Polym Eng Sci 53:105–111

    Article  CAS  Google Scholar 

  • Sahari J, Sapuan SM, Zainudin ES, Maleque MA (2013) Mechanical and thermal properties of environmentally friendly composites derived from sugar palm tree. Mater Des 49:285–289

    Article  CAS  Google Scholar 

  • Salleh Md F, Hassan A, Yahya R, Azzahari AD (2014) Effects of extrusion temperature on the rheological, dynamic mechanical and tensile properties of kenaf fiber/HDPE composites. Compos Part B Eng 58:259–266

    Article  CAS  Google Scholar 

  • Shinoj S, Visvanathan R, Panigrahi S, Varadharaju N (2011) Dynamic mechanical properties of oil palm fibre (OPF)-linear low density polyethylene (LLDPE) biocomposites and study of fibre-matrix interactions. Biosyst Eng 109:1099–1107

    Article  Google Scholar 

  • Sliwa F, Bounia N, Charrier F, Marin G, Malet F (2012) Mechanical and interfacial properties of wood and bio-based thermoplastic composite. Compos Sci Technol 72:1733–1740

    Article  CAS  Google Scholar 

  • Spiridon I, Paduraru OM, Rudowski M, Kozlowski M, Darie RN (2012) Assessment of changes due to accelerated weathering of low-density polyethylene/ feather composites. Ind Eng Chem Res 51:7279–7286

    Article  CAS  Google Scholar 

  • Sreenivasan VS, Ravindran D, Manikandan V, Narayanasamy R (2012) Influence of fibre treatments on mechanical properties of short Sansevieria cylindrica/polyester composites. Mater Des 37:111–121

    Article  CAS  Google Scholar 

  • Tazi M, Erchiqui F, Godard F, Kaddami H, Ajji A (2014) Characterization of rheological and thermophysical properties of HDPE–wood composite. J Appl Polym Sci. doi: 10.1002/app.40495

    Google Scholar 

  • Tiryaki B, Yagmur E, Banford A, Aktas Z (2014) Comparison of activated carbon produced from natural biomass and equivalent chemical compositions. J Anal Appl Pyrol 105:276–283

    Article  CAS  Google Scholar 

  • Wever Diego-Armando Z, Heeres HJ, Broekhuis A (2012) Characterization of Physic nut (Jatropha curcas L.) shells. Biomass Bioenerg 37:177–187

    Article  CAS  Google Scholar 

  • Yao ZT, Chen T, Li HY, Xia MS, Ye Y, Zheng H (2013) Mechanical and thermal properties of polypropylene (PP) composites filled with modified shell waste. J Hazard Mater 262:212–217

    Article  CAS  PubMed  Google Scholar 

  • Zhang H (2014) Effect of a novel coupling agent, alkyl ketene dimer, on the mechanical properties of wood–plastic composites. Mater Des 59:130–134

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abouelkacem Qaiss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Qaiss, A., Bouhfid, R., Essabir, H. (2015). Characterization and Use of Coir, Almond, Apricot, Argan, Shells, and Wood as Reinforcement in the Polymeric Matrix in Order to Valorize These Products. In: Hakeem, K., Jawaid, M., Y. Alothman, O. (eds) Agricultural Biomass Based Potential Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-13847-3_15

Download citation

Publish with us

Policies and ethics