A Vein Biometric Based Authentication System

  • Puneet Gupta
  • Phalguni Gupta
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8880)


In this paper, a highly secure and an accurate personal authentication based on palm-dorsa vein patterns is proposed. Hand-dorsa images are acquired in infrared light by using a low cost camera. Acquisition takes place under unconstrained environment in a contact-less manner. Hand-dorsa images are preprocessed to extract the palm-dorsa which is used for vein pattern extraction by using multi-scale matched filtering. Image registration based matching is performed to verify the user identity. Performance of the proposed system is evaluated on a database containing 840 images from 140 different classes. Experimental results indicates that the proposed system performs better that other existing systems.


Vein matching Biometrics Vein extraction Hand detection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Badawi, A.M.: Hand vein biometric verification prototype: A testing performance and patterns similarity. In: International Conference on Image Processing, Computer Vision, and Pattern Recognition, pp. 3–9 (2006)Google Scholar
  2. 2.
    Chen, Q., Defrise, M., Deconinck, F.: Symmetric phase-only matched filtering of fourier-mellin transforms for image registration and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 16(12), 1156–1168 (1994)CrossRefGoogle Scholar
  3. 3.
    Cross, J., Smith, C.: Thermographic imaging of the subcutaneous vascular network of the back of the hand for biometric identification. In: International Carnahan Conference on Security Technology, pp. 20–35. IEEE (1995)Google Scholar
  4. 4.
    Flynn, P.J., Jain, A.K., Ross, A.A.: Handbook of biometrics. Springer (2008)Google Scholar
  5. 5.
    Gupta, P., Gupta, P.: Slap fingerprint segmentation. In: International Conference on Biometrics: Theory, Applications and Systems, pp. 189–194. IEEE (2012)Google Scholar
  6. 6.
    Gupta, P., Gupta, P.: A dynamic slap fingerprint based verification system. In: Huang, D.-S., Bevilacqua, V., Premaratne, P. (eds.) ICIC 2014. LNCS, vol. 8588, pp. 812–818. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  7. 7.
    Gupta, P., Gupta, P.: An efficient slap fingerprint segmentation and hand classification algorithm. Neurocomputing 142, 464–477 (2014)CrossRefGoogle Scholar
  8. 8.
    Hartung, D., Aastrup Olsen, M., Xu, H., Thanh Nguyen, H., Busch, C.: Comprehensive analysis of spectral minutiae for vein pattern recognition. IET Biometrics 1(1), 25–36 (2012)CrossRefGoogle Scholar
  9. 9.
    Hartung, D., Olsen, M.A., Xu, H., Busch, C.: Spectral minutiae for vein pattern recognition. In: International Joint Conference on Biometrics, pp. 1–7. IEEE (2011)Google Scholar
  10. 10.
    Heenaye, M., Khan, M.: A multimodal hand vein biometric based on score level fusion. Procedia Engineering 41, 897–903 (2012)CrossRefGoogle Scholar
  11. 11.
    Huang, B., Dai, Y., Li, R., Tang, D., Li, W.: Finger-vein authentication based on wide line detector and pattern normalization. In: International Conference on Pattern Recognition, pp. 1269–1272. IEEE (2010)Google Scholar
  12. 12.
    Kumar, A., Prathyusha, K.V.: Personal authentication using hand vein triangulation and knuckle shape. IEEE Transactions on Image Processing 18(9), 2127–2136 (2009)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Kumar, A., Zhou, Y.: Human identification using finger images. IEEE Transactions on Image Processing 21(4), 2228–2244 (2012)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Li, X., Liu, X., Liu, Z.: A dorsal hand vein pattern recognition algorithm. In: International Congress on Image and Signal Processing, vol. 4, pp. 1723–1726. IEEE (2010)Google Scholar
  15. 15.
    Lin, C.L., Fan, K.C.: Biometric verification using thermal images of palm-dorsa vein patterns. IEEE Transactions on Circuits and Systems for Video Technology 14(2), 199–213 (2004)CrossRefGoogle Scholar
  16. 16.
    Miura, N., Nagasaka, A., Miyatake, T.: Feature extraction of finger-vein patterns based on repeated line tracking and its application to personal identification. Machine Vision and Applications 15(4), 194–203 (2004)CrossRefGoogle Scholar
  17. 17.
    Miura, N., Nagasaka, A., Miyatake, T.: Extraction of finger-vein patterns using maximum curvature points in image profiles. IEICE Transactions on Information and Systems 90(8), 1185–1194 (2007)CrossRefGoogle Scholar
  18. 18.
    Soni, M., Gupta, P.: A robust vein pattern-based recognition system. Journal of Computers 7(11), 2711–2718 (2012)CrossRefGoogle Scholar
  19. 19.
    Wang, K., Zhang, Y., Yuan, Z., Zhuang, D.: Hand vein recognition based on multi supplemental features of multi-classifier fusion decision. In: International Conference on Mechatronics and Automation, pp. 1790–1795. IEEE (2006)Google Scholar
  20. 20.
    Wang, L., Leedham, G., Cho, S.Y.: Infrared imaging of hand vein patterns for biometric purposes. IET Computer Vision 1(3), 113–122 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Wang, L., Leedham, G., Siu-Yeung Cho, D.: Minutiae feature analysis for infrared hand vein pattern biometrics. Pattern Recognition 41(3), 920–929 (2008)CrossRefGoogle Scholar
  22. 22.
    Wilson, C.: Vein pattern recognition: a privacy-enhancing biometric. CRC Press (2011)Google Scholar
  23. 23.
    Yang, J., Li, X.: Efficient finger vein localization and recognition. In: International Conference on Pattern Recognition, pp. 1148–1151. IEEE (2010)Google Scholar
  24. 24.
    Yang, J., Shi, Y.: Finger–vein roi localization and vein ridge enhancement. Pattern Recognition Letters 33(12), 1569–1579 (2012)CrossRefGoogle Scholar
  25. 25.
    Yang, J., Shi, Y.: Towards finger-vein image restoration and enhancement for finger-vein recognition. Information Sciences 268, 33–52 (2014)CrossRefGoogle Scholar
  26. 26.
    Yang, J., Shi, Y., Yang, J., Jiang, L.: A novel finger-vein recognition method with feature combination. In: International Conference on Image Processing, pp. 2709–2712. IEEE (2009)Google Scholar
  27. 27.
    Zhang, Z., Ma, S., Han, X.: Multiscale feature extraction of finger-vein patterns based on curvelets and local interconnection structure neural network. In: International Conference on Pattern Recognition, pp. 145–148. IEEE (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Puneet Gupta
    • 1
  • Phalguni Gupta
    • 1
  1. 1.Department of Computer Science and EngineeringIndian Institute of Technology KanpurKanpurIndia

Personalised recommendations