Skip to main content

Simulation-Based Goal-Selection for Autonomous Exploration

  • Conference paper
  • 2037 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8906))

Abstract

High-level planning can be defined as the process of selection of an appropriate solution from a set of possible candidates. This process typically evaluates each candidate according to some reward function consisting of (1) cost, i.e., effort needed to accomplish the candidate and (2) the utility of accomplishing it and then selects the best one according to this evaluation. The key problem lies in the fact that the reward function can be rarely evaluated precisely. At the example of the problem of exploration of an unknown environment by a modular robot we show that precise simulation-based estimation of the cost function leads to better decisions of high-level planning and thus improves exploration process performance. State-of-the-art techniques compute the cost function in goal-selection as a length of the path from the current robot position to a goal-candidate. This is sufficient for robots with simple kinematics for which time to reach a candidate highly correlates with a path length. As this does not hold for complex (modular) robots, we introduce the approach that generates a feasible trajectory to each goal-candidate (taking into account kinematic constrains of the robot) and determines the cost function as time needed to perform this trajectory in a simulator. The experimental results with a robot consisting of eight modules operating in several environments show that the proposed simulation-based solution outperforms standard solutions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amigoni, F., Caglioti, V.: An information-based exploration strategy for environment mapping with mobile robots. Robotics and Autonomous Systems 58(5), 684–699 (2010)

    Article  Google Scholar 

  2. Basilico, N., Amigoni, F.: Exploration strategies based on multi-criteria decision making for an autonomous mobile robot. In: Proc. of the Fourth European Conference on Mobile Robots, pp. 259–264. KoREMA (2009)

    Google Scholar 

  3. Erkmen, I., Erkmen, A., Matsuno, F., Chatterjee, R., Kamegawa, T.: Snake robots to the rescue! IEEE Robotics Automation Magazine 9(3), 17–25 (2002)

    Article  Google Scholar 

  4. Faigl, J., Kulich, M., Preucil, L.: Goal assignment using distance cost in multi-robot exploration. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3741–3746 (October 2012)

    Google Scholar 

  5. Gayle, R., Redon, S., Sud, A., Lin, M., Manocha, D.: Efficient motion planning of highly articulated chains using physics-based sampling. In: ICRA 2007 (2007)

    Google Scholar 

  6. Gerkey, B.P., Vaughan, R.T., Howard, A.: The Player/Stage project: Tools for multi-robot and distributed sensor systems. In: Proc. of the 11th Int. Conf. on Advanced Robotics, pp. 317–323 (2003)

    Google Scholar 

  7. Gonzalez-Banos, H.H., Latombe, J.C.: Navigation strategies for exploring indoor environments. The International Journal of Robotics Research 21(10-11), 829–848 (2002)

    Article  Google Scholar 

  8. Guibas, L., Holleman, C., Kavraki, L.: A probabilistic roadmap planner for flexible objects with a workspace medial-axis-based sampling approach. In: IROS 1999 (1999)

    Google Scholar 

  9. Ijspeert, A.J.: Central pattern generators for locomotion control in animals and robots: A review. Neural Networks 21(4), 642–653 (2008)

    Article  Google Scholar 

  10. Kavraki, L.E., Svestka, P., Claude Latombe, J., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automation 12, 566–580 (1996)

    Article  Google Scholar 

  11. Kulich, M., Faigl, J., Preucil, L.: On distance utility in the exploration task. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 4455–4460 (2011)

    Google Scholar 

  12. Lau, H., Ko, A., Lau, T.: A decentralized control framework for modular robots. In: IROS 2004 (2004)

    Google Scholar 

  13. LaValle, S.M.: Rapidly-exploring random trees: A new tool for path planning (1998), tR 98-11

    Google Scholar 

  14. LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006), http://planning.cs.uiuc.edu/

  15. LaValle, S., Yakey, J., Kavraki, L.: A probabilistic roadmap approach for systems with closed kinematic chains. In: ICRA 1999 (1999)

    Google Scholar 

  16. Makarenko, A.A., Williams, S.B., Bourgault, F., Durrant-Whyte, H.F.: An experiment in integrated exploration. In: IEEE/RSJ Int. Conf. on Intelligent Robots and System, pp. 534–539. IEEE (2002)

    Google Scholar 

  17. Moubarak, P., Ben-Tzvi, P.: Modular and reconfigurable mobile robotics. Robotics and Autonomous Systems 60(12), 1648–1663 (2012)

    Article  Google Scholar 

  18. Open source library: ODE — Open Dynamics Engine, http://www.ode.org/

  19. Stachniss, C., Grisetti, G., Burgard, W.: Information gain-based exploration using Rao-Blackwellized particle filters. In: Proc. of Robotics: Science and Systems, Cambridge, MA, USA (2005)

    Google Scholar 

  20. Valtazanos, A., Ramamoorthy, S.: Evaluating the effects of limited perception on interactive decisions in mixed robotic domains. In: Proceedings of the 8th ACM/IEEE International Conference on Human-Robot Interaction, HRI 2013, pp. 9–16. IEEE Press, Piscataway (2013)

    Google Scholar 

  21. Vonásek, V., Košnar, K., Přeučil, L.: Motion planning of self-reconfigurable modular robots using rapidly exploring random trees. In: Herrmann, G., Studley, M., Pearson, M., Conn, A., Melhuish, C., Witkowski, M., Kim, J.-H., Vadakkepat, P. (eds.) TAROS-FIRA 2012. LNCS, vol. 7429, pp. 279–290. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  22. Vonasek, V., Saska, M., Kosnar, K., Preucil, L.: Global motion planning for modular robots with local motion primitives. In: International Conference of Robotics and Automation (ICRA), Karlsruhe, Germany (2013)

    Google Scholar 

  23. Yamauchi, B.: A frontier-based approach for autonomous exploration. In: Proc. of IEEE Int. Symposium on Computational Intelligence in Robotics and Automation, pp. 146–151. IEEE Comput. Soc. Press (1997)

    Google Scholar 

  24. Yamauchi, B.: Frontier-based exploration using multiple robots. In: Proc. of the Second International Conference on Autonomous Agents, pp. 47–53 (1998)

    Google Scholar 

  25. Yim, M., Duff, D.G., Roufas, K.: Modular reconfigurable robots, an approach to urban search and rescue. In: 1st International Workshop on Human-friendly Welfare Robotics Systems (January 2000)

    Google Scholar 

  26. Yim, M., Roufas, K., Duff, D., Zhang, Y., Eldershaw, C., Homans, S.: Modular reconfigurable robots in space applications. Auton. Robots 14(2-3), 225–237 (2003)

    Article  MATH  Google Scholar 

  27. Yoshida, E., Kurokawa, H., Kamimura, A., Tomita, K., Kokaji, S., Murata, S.: Planning behaviors of a modular robot: an approach applying a randomized planner to coherent structure. In: Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2004), September 30-October 2, vol. 2, pp. 2056–2061 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Kulich, M., Vonásek, V., Přeučil, L. (2014). Simulation-Based Goal-Selection for Autonomous Exploration. In: Hodicky, J. (eds) Modelling and Simulation for Autonomous Systems. MESAS 2014. Lecture Notes in Computer Science, vol 8906. Springer, Cham. https://doi.org/10.1007/978-3-319-13823-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13823-7_16

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13822-0

  • Online ISBN: 978-3-319-13823-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics