Skip to main content

Hybrid (Enzymatic and Photocatalytic) Systems for CO2-Water Coprocessing to Afford Energy-Rich Molecules

  • Chapter
From Molecules to Materials

Abstract

This chapter deals with selected aspects of man-made solar-driven photoreduction of CO2. In particular, direct photosynthetic processes are discussed which include the use of man-made materials for solar energy capture and utilization in enzymatically driven CO2 reduction to energy-rich C1 molecules. The enzymatic reduction of CO2 requires cofactors which are the energy vectors to enzymes which in turn reduce CO2 to energy-rich C1 molecules. The regeneration of the reduced form of such cofactors is a key step in the whole process. The level at which man-made systems may recycle the cofactor and support the reduction reaction is discussed, and barriers to a full exploitation of the option are highlighted. The use of visible light in the entire process is privileged.

The paper does not cover other uses of solar energy such as thermal devices (solar power concentrators) nor solar-driven pure electrochemical processes, such as the use of PV for water electrolysis and hydrogen generation employed for CO2 chemical reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. a) Michele Aresta and John V. Schloss Eds, “Enzymatic and Model Carboxylation and Reduction Reactions for CO 2 Utilization” NATO Series, Kluwer Acad. Publ., 1990. b) Michael Hambourger, Gary F. Moore, David M. Kramer, Devens Gust, Ana L. Moore, Thomas A. Moore Chem. Soc. Rev. 2009, 38, 25-35.

    Google Scholar 

  2. Michele Aresta, Angela Dibenedetto, Liang-N. He, Analysis of demand for captured CO 2 and products from CO 2 conversion. Report exclusively for Members of the Carbon Dioxide Capture and Conversion (CO2CC) Program of The Catalyst Group, 2012.

    Google Scholar 

  3. a) Robin Obert, Bakull C. Dave J. Am. Chem. Soc. 1999, 121(51), 12192-12193; b) Angela Dibenedetto, Paolo Stufano, Wojciech Macyk, Tomasz Baran, Carlo Fragale, Mirco Costa, Michele Aresta ChemSusChem 2012, 5, 373-378.

    Google Scholar 

  4. a) Eberhard Steckhan, Sabine Herrmann, Romain Ruppert, Eva Dietz, Markus Frede, Elke Spika Organometallics 1991, 10, 1568-1577; b) Gottfried Unden, Johannes Bongaerts Biochimica et Biophysica Acta-Bioenergetics 1997, 1320(3), 217-234.

    Google Scholar 

  5. Corinna Gallus, Bernhard Schink Archives of Microbiology 1998, 169, 333-338.

    Article  Google Scholar 

  6. a) Frank Hollmann, Andreas Schmid, Eberhard Steckhan Angew. Chem. Int. Ed. 2001, 40, 169-171. b) Frank Hollmann, Po-Chi Lin, Bernard Witholt, Andreas Schmid J. Am. Chem. Soc. 2003, 125, 8209-8217. c) Franck Hollmann, K. Hofstetter, Andreas Schmid Trends in Biotechnology 2006, 24, 163-171.

    Google Scholar 

  7. Pierre Cuendet, Michael Graetzel Photochem. Photobiol. 1984, 39, 609-612.

    Article  Google Scholar 

  8. Elzbieta Bojarska, Krzysztof Pawlicki, Barbara Czochralska J. Photochem. Photobiol. A: Chem. 1997, 108, 207-213.

    Article  Google Scholar 

  9. Sahng Ha Lee, Jae Hong Kim, Chan Beum Park Chem. Eur. J. 2013, 19, 4392-4406.

    Article  Google Scholar 

  10. Sahng Ha Lee, Dong Heon Nam, Chan Beum Park Adv. Synth. Catal. 2009, 351, 2589-2594.

    Article  Google Scholar 

  11. Sahng Ha Lee, Dong Heon Nam, Jae Hong Kim, Jin-Ook Baeg, Chan Beum Park ChemBioChem 2009, 10, 1621-1624.

    Article  Google Scholar 

  12. Jae Hong Kim, Sahng Ha Lee, Joon Seok Lee, Minah Lee and Chan Beum Park Chem. Commun. 2011, 47, 10227-10229.

    Article  Google Scholar 

  13. Dong Heon Nam, Chan Beum Park ChemBioChem 2012, 13, 1278-1282.

    Article  Google Scholar 

  14. Dong Heon Nam, Sahng Ha Lee, Chan Beum Park Small 2010, 6, 922-926.

    Article  Google Scholar 

  15. Chan Beum Park, Sahng Ha Lee, Esakkiappan Subramanian, Bharat. B. Kale, Sang Mi Lee and Jin-Ook Baeg Chem. Commun. 2008, 5423-5425.

    Google Scholar 

  16. Sahng Ha Lee, Hye Jung Lee, Keehoon Won, and Chan Beum Park Chem. Eur. J. 2012, 18, 5490-5495.

    Article  Google Scholar 

  17. Kerstin T. Oppelt, Eva Wöß, Martin Stiftinger, Wolfgang Schöfberger, Wolfgang Buchberger, and Günther Knör Inorg. Chem. 2013, 52, 11910-11922.

    Article  Google Scholar 

  18. Zhongyi Jiang, Chenqiu Lu, Hong Wu Ind. Eng. Chem. Res. 2005, 44, 4165-4170.

    Article  Google Scholar 

  19. Jungki Ryu, Sahng Ha Lee, Dong Heon Nam, Chan Beum Park Adv. Mater. 2011, 23, 1883-1888.

    Article  Google Scholar 

  20. Sahng Ha Lee, Jungki Ryu, Dong Heon Nam, Chan Beum Park Chem. Commun. 2011, 47, 4643-4645.

    Article  Google Scholar 

  21. Jae Hong Kim, Dong Heon Nam, Chan Beum Park Current Opinion in Biotechnology 2014, 28, 1-9.

    Article  Google Scholar 

  22. Joon Seok Lee, Sahng Ha Lee, Jae Hong Kim, Chan Beum Park Lab Chip, 2011, 11, 2309-2311.

    Article  Google Scholar 

  23. Dariusz Mitoraj, Radim Beranek, Horst Kisch Photochem. Photobiol. Sci. 2010, 9, 31-38.

    Article  Google Scholar 

  24. Michal Bledowski, Lidong Wang, Ayyappan Ramakrishnan, Radim Beranek J. Mater. Res. 2013, 28, 411-417.

    Article  Google Scholar 

  25. Jian Liu, Markus Antonietti Energy Environ. Sci. 2013, 6, 1486-1493.

    Article  Google Scholar 

  26. Shrikant S. Bhoware, Ka Young Kim, Jin Ah Kim, Qiong Wu, Jinheung Kim, J. Phys. Chem., C 2011, 115, 2553-2557.

    Article  Google Scholar 

  27. Sumit Choudhury, Jin-Ook Baeg, No-Joong Park, Rajesh K. Yadav Angew. Chem. Int. Ed. 2012, 51, 11624-11628.

    Article  Google Scholar 

  28. Rajesh K. Yadav, Jin-Ook Baeg, Gyu Hwan Oh, No-Joong Park, Ki-jeong Kong, Jinheung Kim, Dong Won Hwang, Soumya K. Biswas J. Am. Chem. Soc. 2012, 134, 11455-11461.

    Article  Google Scholar 

  29. Mark D. Doherty, David C. Grills, James T. Muckerman, Dmitry E. Polyansky, Etsuko Fujita Coord. Chem. Rev. 2010, 254, 2472-2482.

    Article  Google Scholar 

  30. James T. Muckerman, Patrick Achord, Carol Creutz, Dmitry E. Polyansky, Etsuko Fujita PNAS 2012, 109, 15657-15662.

    Article  Google Scholar 

  31. Fumio Kurayama, Tatsushi Matsuyama, Hideo Yamamoto Advanced Powder Technol. 2004, 15, 51-61.

    Article  Google Scholar 

  32. a) Piero Giannoccaro, Ms Thesis, Dept. of Chemistry, University of Bari, 2008; b) Michele Aresta, Angela Dibenedetto, Tomasz Baran, Antonella Angelini, Przemyslaw Labuz, Wojciech Macyk, invited paper, BJOC, 2014; c) Michele Aresta, Angela Dibenedetto, Wojciech Macyk, Tomasz Baran, IT Patent MI20131135.

    Google Scholar 

  33. Nguyen T. Van, H. Ti. Tien J. Phys. Chem. 1970, 74, 3559-3568.

    Article  Google Scholar 

  34. Helmut Tributsch, Melvin Calvin Photochem. Photobiol. 1971, 14, 95-112.

    Article  Google Scholar 

  35. Ching W. Tang, Andreas C. Albrecht J. Phys. Chem. 1975, 62, 2139-2149.

    Article  Google Scholar 

  36. Ching W. Tang, Andreas C. Albrecht J. Phys. Chem. 1975, 63, 953-961.

    Article  Google Scholar 

  37. Fujio Takahashi, Ryoichi Kikuchi Biochim. Biophys. Acta-Bioenergetics 1976, 430, 490-500.

    Article  Google Scholar 

  38. Fujio Takahashi, Masuo Aizawa, Ryoichi Kikuchi, Shuichi Suzuki Electrochim. Acta 1977, 22, 289-293.

    Article  Google Scholar 

  39. Alexandre Leonard, Philippe Dandoy, Emeric Danloy, Gregory Leroux, Christophe F. Meunier, Joanna C. Rooke, Bao-Lian Su Chem. Soc. Rev. 2011, 40, 860-885.

    Article  Google Scholar 

  40. Alexandre Leonard, Joanna C. Rooke, Christophe F. Meunier, Hugo Sarmento, Jean-Pierre Descy, Bao-Lian Su Energy Environ. Sci. 2010, 3, 370-377.

    Article  Google Scholar 

  41. Christophe F. Meunier, Philippe Dandoy, Bao-Lian Su Journal of Colloid and Interface Science 2010, 342, 211-224.

    Article  Google Scholar 

  42. Christophe F. Meunier, Joanna C. Rooke, Alexandre Leonard, Pierre Van Cutsem, Bao-Lian Su J. Mater. Chem. 2010, 20, 929-936.

    Article  Google Scholar 

  43. Joanna Claire Rooke, Alexandre Leonard, Hugo Sarmento, Christophe F. Meunier, Jean-Pierre Descy, Bao-Lian Su J. Mater. Chem. 2011, 21, 951-959.

    Article  Google Scholar 

  44. Christophe F. Meunier, Joanna C. Rooke, Alexandre Leonard, Hao Xie, Bao-Lian Su Chem. Commun. 2010, 46, 3843-3859.

    Article  Google Scholar 

  45. Christophe F. Meunier, Pierre Van Cutsem, Young-Uk Kwon, Bao-Lian Su J. Mater. Chem. 2009, 19, 1535-1542.

    Article  Google Scholar 

  46. Joanna Claire Rooke, Alexandre Léonard, Christophe F. Meunier, Hugo Sarmento, Jean-Pierre Descy, Bao-Lian Su Journal of Colloid and Interface Science 2010, 344, 348-352.

    Article  Google Scholar 

Download references

Acknowledgments

This work is a part of the “Activation of small molecules in photocatalytic systems” project, realized within the TEAM program awarded by the Foundation for Polish Science, cofinanced by the European Union, Regional Development Fund (TEAM/2012-9/4), and of the IC2R srl program on “Carbon Recycling.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Aresta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Aresta, M., Dibenedetto, A., Macyk, W. (2015). Hybrid (Enzymatic and Photocatalytic) Systems for CO2-Water Coprocessing to Afford Energy-Rich Molecules. In: Rozhkova, E., Ariga, K. (eds) From Molecules to Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-13800-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13800-8_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13799-5

  • Online ISBN: 978-3-319-13800-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics