Skip to main content

Artificial Photosynthesis Producing Solar Fuels: Natural Tactics of Photosynthesis

  • Chapter
From Molecules to Materials

Abstract

70 % of mankind’s current energy needs are met by burning fossil fuels. This is already problematic since oil and gas supplies are limited and because of the adverse environmental effects of rising levels of carbon dioxide in the atmosphere. Moreover this situation is set to get worse as current predictions estimate that our energy needs will double by 2050. Mankind is, therefore, facing a major challenge to find new ways of creating clean, renewable fuels. One potentially abundant source of energy is solar radiation. More energy strikes the earth surface every hour than mankind uses each year. The problem is how to harness such an abundant yet diffuse source of energy. Photosynthesis has evolved mechanisms to achieve this. Conceptually photosynthesis can be divided into the following partial reactions: light harvesting (concentration), charge separation (conversion of solar energy into chemical energy), and finally multi-electron catalysis that takes electrons from water and uses them to reduce carbon dioxide to carbohydrates (fuel). Any proposed strategies that set out to mimic this process in order to make solar fuels must begin with a light-harvesting or light-concentration step. We know a great deal about the structure and function of photosynthetic light-harvesting complexes as individual molecules, but rather little is known about how their supramolecular organization within their photosynthetic membranes affects their overall function in vivo. We wish to understand how the supramolecular arrangement of the light-harvesting apparatus relates to overall light-harvesting efficiency and to be able to translate this information to inform the design of robust artificial light-harvesting arrays that can, in the long term, be used in devices for producing solar fuels. Photosynthetic antenna complexes are organized on the nanoscale, and a major question is how to translate this information into the design of meso- to macroscale light-harvesting devices. This chapter will outline how photosynthesis achieves “solar to fuel” conversion concentrating on the general principles involved. Recent progress on understating the molecular details of the key reactions in the photosynthetic process has been remarkable. We are now at the stage where it is realistic to start to use this “biological blueprint” to begin to construct devices that have the capability to mimic the key steps in the natural process. This is one of the grand scientific challenges of our time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. International Energy Agency (2012) Key world energy statistics. http://www.iea.org/publications/freepublications/publication/kwes.pdf.

  2. U.S. Energy Information Administration (2011) World shale gas resources: An initial assessment of 14 regions outside the United States. http://www.adv-res.com/pdf/ARI EIA Intl Gas Shale APR 2011.pdf.

  3. U.S. Department of Energy (2005) Basic research needs for solar energy utilization. http://www.sc.doe.gov/bes/reports/files/SEU_rpt.pdf.

  4. European Science Foundation (2005) Harnessing solar energy for the production of clean fuels. http://ssnmr.leidenuniv.nl/files/ssnmr/CleanSolarFuels.pdf.

  5. Centi G, Perathoner S (2010) Towards solar fuels from water and CO2. ChemSusChem 3:195-208. doi:10.1002/cssc.200900289

    Article  Google Scholar 

  6. Umena Y, Kawakami K, Shen J-R, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473:55-60. doi:10.1038/nature09913

    Article  Google Scholar 

  7. Roszak AW, McKendrick K, Gardiner AT, Mitchell IA, Isaacs NW, Cogdell RJ, Hashimoto H, Frank HA (2004) Protein regulation of carotenoid binding: Gatekeeper and locking amino acid residues in reaction centers of Rhodobacter sphaeroides. Structure 12 (5):765-773. doi:10.1016/j.str.2004.02.037

    Article  Google Scholar 

  8. Fujishima A, Iketani H, Honda K (1970) Relation between the size of the electrode and rotation velocity at rotating ring disk electrode. Bull Chem Soc Jpn 43 (12):3949-3951. doi:10.1246/bcsj.43.3949

    Article  Google Scholar 

  9. Fujishima A, Honda K (1971) Electrochemical evidence for the mechanism of the primary stage of photosynthesis. Bull Chem Soc Jpn 44 (4):1148-1150. doi:10.1246/bcsj.44.1148

    Article  Google Scholar 

  10. Fujishima A, Sugiyama E, Honda K (1971) Photosensitized electrolytic oxidation of iodide ions on cadmium sulfide single crystal electrode. Bull Chem Soc Jpn 44 (1):304. doi:10.1246/bcsj.44.304

    Article  Google Scholar 

  11. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238 (5358):37-38. doi:10.1038/238037a0

    Article  Google Scholar 

  12. Maeda K, Domen K (2012) Photocatalytic water splitting: Recent progress and future challenges. J Phys Chem Lett 1 (2655-2661). doi:10.1021/jz1007966

    Article  Google Scholar 

  13. Maeda K, Higashi M, Lu DL, Abe R, Domen K (2010) Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst. J Am Chem Soc 132 (16):5858-5868. doi:10.1021/ja1009025

    Article  Google Scholar 

  14. Tanaka K, Isobe H, Yamanaka S, Yamaguchi K (2012) Similarities of artificial photosystems by ruthenium oxo complexes and native water splitting systems. Proc Nat Acad Sci USA 109 (39):15600-15605. doi:10.1073/pnas.1120705109

    Article  Google Scholar 

  15. Duan L, Bozoglian F, Mandal S, Stewart B, Privalov T, Llobet A, Sun L (2012) A molecular ruthenium catalyst with water-oxidation activity comparable to that of photosystem II. Nature Chemistry 4:418-423. doi:10.1038/nchem.1301

    Article  Google Scholar 

  16. Morris AJ, Meyer GJ, Fujita E (2009) Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels. Acc Chem Res 42 (12):1983-1994. doi:10.1021/ar9001679

    Article  Google Scholar 

  17. Hawecker J, Lehn JM, Ziessel R (1986) Photochemical and electrochemical reduction of carbon-dioxide to carbon-monoxide mediated by (2,2′-bipyridine)tricarbonylchlororhenium(I) and related complexes as homogeneous catalysts. Helv Chim Acta 69 (8):1990-2012. doi:10.1002/hlca.19860690824

    Article  Google Scholar 

  18. Takeda H, Koike K, Inoue H, Ishitani O (2008) Development of an efficient photocatalytic system for CO2 reduction using rhenium(l) complexes based on mechanistic studies. J Am Chem Soc 130 (6):2023-2031. doi:10.1021/ja077752e

    Article  Google Scholar 

  19. Takeda H, Ishitani O (2010) Development of efficient photocatalytic systems for CO2 reduction using mononuclear and multinuclear metal complexes based on mechanistic studies. Coord Chem Rev 254 (3–4):346-354. doi:10.1016/j.ccr.2009.09.030

    Article  Google Scholar 

  20. Takeda H, Koike K, Morimoto T, Inumaru H, Ishitani O (2011) Photochemistry and photocatalysis of rhenium(I) diimine complexes. In: VanEldik R, Stochel G (eds) Advances in Inorganic Chemistry, Vol 63: Inorganic Photochemistry, vol 63. Advances in Inorganic Chemistry. pp 137-186. doi:10.1016/b978-0-12-385904-4.00007-x

  21. Tamaki Y, Watanabe K, Koike K, Inoue H, Morimoto T, Ishitani O (2012) Development of highly efficient supramolecular CO2 reduction photocatalysts with high turnover frequency and durability. Faraday Discussions 155:115-127. doi:10.1039/c1fd00091h

    Article  Google Scholar 

  22. Sato S, Morikawa T, Kajino T, Ishitani O (2013) A highly efficient mononuclear iridium complex photocatalyst for CO2 reduction under visible light. Angew Chem Int Ed 52 (3):988-992. doi:10.1002/anie.201206137

    Article  Google Scholar 

  23. Sato S, Arai T, Morikawa T, Uemura K, Suzuki M, Tanaka H, Kajino T (2011) Selective CO2 conversion to formate conjugated with H2O oxidation utilizing semiconductor/complex hybrid photocatalysts. J Am Chem Soc 133 (39):15240-15243. doi:10.1021/ja204881d

    Article  Google Scholar 

  24. Arai T, Sato S, Kajino T, Morikawa T (2013) Solar CO2 reduction using H2O by a semiconductor/metal-complex hybrid photocatalyst: enhanced efficiency and demonstration of a wireless system using SrTiO3 photoanodes. Energy & Environmental Science 6 (4):1274-1282. doi:10.1039/c3ee24317f

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideki Hashimoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hashimoto, H., Uragami, C. (2015). Artificial Photosynthesis Producing Solar Fuels: Natural Tactics of Photosynthesis. In: Rozhkova, E., Ariga, K. (eds) From Molecules to Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-13800-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13800-8_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13799-5

  • Online ISBN: 978-3-319-13800-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics