Skip to main content

Part of the book series: Springer Series in Computational Mathematics ((SSCM,volume 47))

  • 7942 Accesses

Abstract

The mathematical description of phase separation and melting processes is often based on phase field models. These descriptions define a phase field variable that specifies particular phases as the solution of a semilinear parabolic partial differential equation. A small parameter that defines the width of the interfaces between different phases enters classical stability estimates in a critical way, and refined arguments are required to improve this dependence. Applying those estimates to analyzing approximation schemes for the simplest case of the Allen–Cahn equation in terms of a priori and a posteriori error estimates is carried out. The stability of various implicit and semi-implicit time-stepping schemes is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alikakos, N.D., Fusco, G.: Slow dynamics for the Cahn-Hilliard equation in higher space dimensions. I. Spectral estimates. Commun. Partial Differ Equ 19(9–10), 1397–1447 (1994). http://dx.doi.org/10.1080/03605309408821059

  2. Barrett, J.W., Blowey, J.F.: An error bound for the finite element approximation of the Cahn-Hilliard equation with logarithmic free energy. Numer. Math. 72(1), 1–20 (1995). http://dx.doi.org/10.1007/s002110050157

  3. Bartels, S., Müller, R., Ortner, C.: Robust a priori and a posteriori error analysis for the approximation of Allen-Cahn and Ginzburg-Landau equations past topological changes. SIAM J. Numer. Anal. 49(1), 110–134 (2011). http://dx.doi.org/10.1137/090751530

  4. Chen, X.: Spectrum for the Allen-Cahn, Cahn-Hilliard, and phase-field equations for generic interfaces. Commun. Partial Differ Equ 19(7–8), 1371–1395 (1994). http://dx.doi.org/10.1080/03605309408821057

  5. Deckelnick, K., Dziuk, G., Elliott, C.M.: Computation of geometric partial differential equations and mean curvature flow. Acta Numer. 14, 139–232 (2005). http://dx.doi.org/10.1017/S0962492904000224

  6. Elliott, C.M., French, D.A.: Numerical studies of the Cahn-Hilliard equation for phase separation. IMA J. Appl. Math. 38(2), 97–128 (1987). http://dx.doi.org/10.1093/imamat/38.2.97

  7. Emmerich, H.: The Diffuse Interface Approach in Materials Science. Lecture Notes in Physics, vol. M 73. Springer, Berlin (2003)

    Google Scholar 

  8. Feng, X., Prohl, A.: Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows. Numer. Math. 94(1), 33–65 (2003). http://dx.doi.org/10.1007/s00211-002-0413-1

  9. Kessler, D., Nochetto, R.H., Schmidt, A.: A posteriori error control for the Allen-Cahn problem: circumventing Gronwall’s inequality. M2AN Math. Model. Numer. Anal. 38(1), 129–142 (2004). http://dx.doi.org/10.1051/m2an:2004006

  10. Nochetto, R.H., Verdi, C.: Convergence past singularities for a fully discrete approximation of curvature-driven interfaces. SIAM J. Numer. Anal. 34(2), 490–512 (1997). http://dx.doi.org/10.1137/S0036142994269526

  11. Penrose, O., Fife, P.C.: Thermodynamically consistent models of phase-field type for the kinetics of phase transitions. Phys. D 43(1), 44–62 (1990). http://dx.doi.org/10.1016/0167-2789(90)90015-H

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sören Bartels .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bartels, S. (2015). The Allen–Cahn Equation. In: Numerical Methods for Nonlinear Partial Differential Equations. Springer Series in Computational Mathematics, vol 47. Springer, Cham. https://doi.org/10.1007/978-3-319-13797-1_6

Download citation

Publish with us

Policies and ethics