Skip to main content

Modularity and Supporting Tools and Methods

  • Chapter
  • First Online:
Book cover Concurrent Engineering in the 21st Century

Abstract

The paradigm of modularity has emerged as a relevant way to meet customer requirements with a wide range of variety and customisation of products, from unique to standard ones. The modularity area is becoming increasingly multidisciplinary, which implies holistic and articulated concurrent engineering approaches. Modularity can intersect technical aspects with the business aspects. The use of modular technology has wide-reaching implications for any design and development company that undertake to use this paradigm. This chapter provides a framework for understanding the modularity in the context of concurrent engineering. It involves design for modularity as well as management of modularity. Theoretical and practical development of consistent modular methods, their implementation technologies and tools for mass customization and product configuration are examined. Some of the possible implications of these developments are presented from concurrent engineering point of view. The current trend is drawn toward usage and integration of different technologies such as advanced CAD systems, product configurators, agent-based systems and PDM systems. Three particular application areas with industrial use cases are presented. A discussion about research challenges and further developments closes this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Manovich J (2001) The language of new media. MIT Press, Cambridge

    Google Scholar 

  2. Fodor JA (1983) The Modularity of Mind. MIT Press, Cambridge

    Google Scholar 

  3. Salvador F (2007) Toward a product system modularity construct: literature review and reconceptualization. IEEE Trans Eng Manag 54(2):219–240

    Article  Google Scholar 

  4. Sosa ME, Eppinger SD, Rowles CM (2007) A network approach to define modularity of components in complex products. J Mech Des 129(11):1118–1129

    Article  Google Scholar 

  5. Boysen N, Scholl A (2009) A general solution framework for component-commonality problems. Bus Res 2(1):86–106

    Article  Google Scholar 

  6. Jiao JR, Simpson TW (2007) Siddique Z (2007) Product family design and platform-based product development: a state-of-the-art review. J Intell Manuf 18:5–29

    Article  Google Scholar 

  7. Baldwin CY, Clark KB (2006) Modularity in the design of complex engineering systems. In: Braha D, Minai AA, Bar-Yam Y (eds) Complex engineered systems—science meets technology. Springer, Berlin, pp 175–205

    Chapter  Google Scholar 

  8. Kuntz L, Vera A (2007) Modular organization and hospital performance. Health Serv Manag Res Royal Soc Med Press 20(1):48–58

    Article  Google Scholar 

  9. Baldwin CY, Clark KB (1997) Managing in an age of modularity. Harvard Business Review 75(5): 84–93. Harvard Business School Publ. Boston

    Google Scholar 

  10. Pahl G, Beitz W, Feldhusen J, Grote KH (2007) Engineering design a systematic approach, 3rd edn. Springer, London

    Google Scholar 

  11. Priest JW, Sanchez JM (2001) Product development and design for manufacturing: a collaborative approach to producibility and reliability, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  12. Ehrlenspiel K, Kiewert A, Lindemann U (2007) Cost-efficient design. Springer, Berlin

    Book  Google Scholar 

  13. Ong SK, Xu QL, Nee AYC (2008) Design reuse in product development modeling, analysis and optimization. World Scientific Publishing, Singapore

    Google Scholar 

  14. Gawer A (2009) Platforms, markets and innovation. Edward Elgar Publishing, Cheltenham

    Book  Google Scholar 

  15. PillerFT Tseng MM (2010) Handbook of research in mass customization and personalization. World Scientific Publishing, Singapore

    Google Scholar 

  16. Fogliatto FS, da Silveira GJC (2011) Mass customization: engineering and managing global operations. Springer, London

    Book  Google Scholar 

  17. Parry G, Graves A (2008) Build to order: the road to the 5-day car. Springer, London

    Book  Google Scholar 

  18. Hvam L, MortensenNH Riis J (2008) Product customization. Springer, London

    Google Scholar 

  19. Hüttenrauch M, Baum T (2008) Effiziente Vielfalt Die dritte Revolution in der Automobilindustrie. Springer, Berlin

    Google Scholar 

  20. Junge M (2005) Controlling modularer Produktfamilien in der Automobilindustrie. Deutscher Universitätsverlag, Wiesbaden

    Book  Google Scholar 

  21. Wei G, Qin Y (2012) Framework of rapid product cost estimation based on the modular product family. In: Chen R (ed) Proceedings of 2011 international conference in electrics communication and automatic control. Springer, London, pp 9–14

    Chapter  Google Scholar 

  22. Rapp T (2010) Produktstrukturierung: Komplexitätsmanagement durch modulare Produktstrukturen und –plattformen, 2nd edn. Books On Demand, Norderstedt

    Google Scholar 

  23. Schuh G, Arnoscht J (2012) Aleksic S (2012) Systematische Gestaltung von Kommunalitäten in Produkten und Prozessen. ZFW, Jahrg 107(5):322–326

    Google Scholar 

  24. Daniilidis C, Enßlin V, EbenK, Lindemann U (2011) A classification framework for product modularization methods. ZFW, Proceedings of the 18th international conference on engineering design, ICED11

    Google Scholar 

  25. Suh NP (2001) Axiomatic design: advances and applications. Oxford University Press, Oxford

    Google Scholar 

  26. Holmberg G (2002) A modular approach to the aircraft product development capability. In: 23rd congress of international council of the aeronautical sciences, 8–13 Sep, 2002, Toronto. http://www.icas.org/icas_archive/icas2002/papers/652.pdf. Accessed 15 July 2013

  27. Hirtz J, Stone RB, McAdams DA, Szykman S, Wood KL (2002) A functional basis for engineering design: reconciling and evolving previous efforts. Res Eng Des 13:65–82

    Google Scholar 

  28. Stone RB, Wood KL (2000) A functional basis for engineering design: reconciling and evolving previous efforts. Des Stud 21(1):5–31

    Article  Google Scholar 

  29. Eppinger SD, Browning TR (2012) Design structure matrix methods and applications. MIT Press, Cambridge

    Google Scholar 

  30. DSMweb.org. http://www.dsmweb.org/en/dsm.html. Accessed 15 July 2013

  31. Cheng Q, Zhang G, Gu P, Shao X (2012) A product module identification approach based on axiomatic design and design structure matrix. Concurrent Eng 20:185

    Article  Google Scholar 

  32. Erixon G (1998) Modular function deployment–a method for product modularisation, PhD thesis, The Royal Institute of Technology, Stockholm

    Google Scholar 

  33. Bergman B, de Mare J, Loren S, Svensson T (2009) Robust design methodology for reliability: exploring the effects of variation and uncertainty. Wiley, Chichester

    Book  Google Scholar 

  34. Fischer JO (2008) Kostenbewusstes Konstruieren: Praxisbewährte Methoden und Informationssysteme für den Konstruktionsprozess. Springer, Berlin

    Google Scholar 

  35. Tiihonen J et al (1996) State of 10 cases in the Finnish industry. In: Tomiyama T, Mäntylä M, Finger S (eds) Knowledge intensive CAD. Chapman & Hall, London, pp 95–114

    Google Scholar 

  36. Brinkop A (2013) Marktführer Produktkonfiguration, Version 1.25, 4. Juli 2013. http://brinkop-consulting.com/guide/marktfuehrer.pdf. Accessed 15 Oct 2013

  37. Ostrosi E, Fougères A-J, Ferney M (2012) Fuzzy Agents for product configuration in collaborative and distributed design process. Appl Soft Comput 12(8):2091–2105

    Article  Google Scholar 

  38. Deciu ER, Ostrosi E, Ferney M, Gheorghe M (2005) Configurable product design using multiple fuzzy models. J Eng Des 16(2–3):209–235

    Article  Google Scholar 

  39. Munoz-Hernandez S, Gomez-Perez JM (2005) Solving collaborative fuzzy agents problems with CLP (FD). LNCS 3350:187–202

    Google Scholar 

  40. Ostrosi E, Fougères AJ (2011) Optimization of product configuration assisted by fuzzy agents. Int J Interact Des Manuf 5(1):29–44

    Article  Google Scholar 

  41. Ostrosi E, Haxhiaj L, Ferney M (2008) Configuration grammars: powerful tools for product modelling in cad systems. In: Curran R et al (eds) Collaborative product and service life cycle management for a sustainable world, Proceedings of the 15th ISPE international conference on concurrent engineering (CE 2008). Springer, London, pp 451–459

    Google Scholar 

  42. Ostrosi E, Fougères AJ, Ferney M, Klein D (2012) A fuzzy configuration multi-agent approach for product family modelling in conceptual design. J Intell Manuf 23(6):2565–2586

    Article  Google Scholar 

  43. Fougères AJ, Ostrosi E (2013) Fuzzy agent-based approach for consensual design synthesis in product configuration. Int Comput Aided Eng 20:259–274

    Google Scholar 

  44. Falkner A, Haselböck A (2012) An overview of configurator use at Siemens, 2012 Oxford Configuration Workshop, 12–13 Jan, Oxford University. http://www.cs.ox.ac.uk/OxfordConfiguration/. Accessed 15 Oct 2013

  45. Kübler AJ, Zengler C (2010) Model counting in product configuration. Workshop on logics for component configuration (LoCoCo 2010) EPTCS 29, pp 44–53

    Google Scholar 

  46. Batchelor J, Andersen HR (2012) Bridging the product configuration gap between PLM and ERP—an automotive case study. In: 19th international product development management conference, Manchester, 17–19 June 2012

    Google Scholar 

  47. Helo PT, Xu QL, Kyllonen SJ, Jiao RJ (2010) Integrated vehicle configuration system—connecting the domains of mass customization. Comput Ind 61(1):44–52

    Article  Google Scholar 

  48. Azamatov A, Lee JW, Byun YH (2011) Comprehensive aircraft configuration design tool for integrated product and process development. Adv Eng Softw 42(2011):35–49

    Article  MATH  Google Scholar 

  49. Lino GmbH. http://www.lino.de/3d_layout.html. Accessed 15 Feb 2014

  50. Elgh F (2014) Automated engineer-to-order systems A task oriented approach to enable traceability of design rationale. Int J Agile Syst Manag 7(3–4):324–347

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josip Stjepandić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Stjepandić, J., Ostrosi, E., Fougères, AJ., Kurth, M. (2015). Modularity and Supporting Tools and Methods. In: Stjepandić, J., Wognum, N., J.C. Verhagen, W. (eds) Concurrent Engineering in the 21st Century. Springer, Cham. https://doi.org/10.1007/978-3-319-13776-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13776-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13775-9

  • Online ISBN: 978-3-319-13776-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics