Skip to main content

Using Representation Theorems for Proving Polynomials Non-negative

  • Conference paper
Artificial Intelligence and Symbolic Computation (AISC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8884))

Abstract

Proving polynomials non-negative when variables range on a subset of numbers (e.g., [0, + ∞ )) is often required in many applications (e.g., in the analysis of program termination). Several representations for univariate polynomials P that are non-negative on [0, + ∞ ) have been investigated. They can often be used to characterize the property, thus providing a method for checking it by trying a match of P against the representation. We introduce a new characterization based on viewing polynomials P as vectors, and find the appropriate polynomial basis in which the non-negativeness of the coordinates representing P in witnesses that P is non-negative on [0, + ∞ ). Matching a polynomial against a representation provides a way to transform universal sentences ∀ x ∈ [0, + ∞ ) P(x) ≥ 0 into a constraint solving problem which can be solved by using efficient methods. We consider different approaches to solve both kind of problems and provide a quantitative evaluation of performance that points to an early result by Pólya and Szegö’s as an appropriate basis for implementations in most cases.

Developed during a sabbatical year at UIUC. Supported by projects NSF CNS 13-19109, MINECO TIN2010-21062-C02-02 and TIN 2013-45732-C4-1-P, and GV BEST/2014/026 and PROMETEO/2011/052.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alarcón, B., Gutiérrez, R., Lucas, S., Navarro-Marset, R.: Proving Termination Properties with mu-term. In: Johnson, M., Pavlovic, D. (eds.) AMAST 2010. LNCS, vol. 6486, pp. 201–208. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  2. Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry. Springer, Berlin (2006)

    MATH  Google Scholar 

  3. Bernstein, S.: Démonstration du théorème de Weierstrass fondée sur le calcul des probabilités. Communic. Soc. Math. de Kharkow 13(2), 1–2 (1912)

    Google Scholar 

  4. Bernstein, S.: Sur la répresentation des polynômes positifs. Communic. Soc. Math. de Kharkow 14(2), 227–228 (1915)

    Google Scholar 

  5. Borralleras, C., Lucas, S., Oliveras, A., Rodríguez, E., Rubio, A.: SAT Modulo Linear Arithmetic for Solving Polynomial Constraints. Journal of Automated Reasoning 48, 107–131 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Boudaoud, F., Caruso, F., Roy, M.-F.: Certificates of Positivity in the Bernstein Basis. Discrete Computational Geometry 39, 639–655 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Choi, M.D., Lam, T.Y., Reznick, B.: Sums of squares of real polynomials. In: Proc. of the Symposium on Pure Mathematics, vol. 4, pp. 103–126. American Mathematical Society (1995)

    Google Scholar 

  8. Contejean, E., Marché, C., Tomás, A.-P., Urbain, X.: Mechanically proving termination using polynomial interpretations. Journal of Automated Reasoning 32(4), 315–355 (2006)

    Google Scholar 

  9. Hilbert, D.: Über die Darstellung definiter Formen als Summe von Formenquadraten. Mathematische Annalen 32, 342–350 (1888)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hong, H., Jakuš, D.: Testing Positiveness of Polynomials. Journal of Automated Reasoning 21, 23–38 (1998)

    Article  MathSciNet  Google Scholar 

  11. Karlin, S., Studden, W.J.: Tchebycheff systems: with applications in analysis and statistics. Interscience, New York (1966)

    MATH  Google Scholar 

  12. Lucas, S.: Polynomials over the reals in proofs of termination: from theory to practice. RAIRO Theoretical Informatics and Applications 39(3), 547–586 (2005)

    Article  MATH  Google Scholar 

  13. Polya, G., Szegö, G.: Problems and Theorems in Analysis II. Springer (1976)

    Google Scholar 

  14. Powers, V., Reznick, B.: Polynomials that are positive on an interval. Transactions of the AMS 352(10), 4677–4692 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Powers, V., Wörmann, T.: An algorithm for sums of squares of real polynomials. Journal of Pure and Applied Algebra 127, 99–104 (1998)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Lucas, S. (2014). Using Representation Theorems for Proving Polynomials Non-negative. In: Aranda-Corral, G.A., Calmet, J., Martín-Mateos, F.J. (eds) Artificial Intelligence and Symbolic Computation. AISC 2014. Lecture Notes in Computer Science(), vol 8884. Springer, Cham. https://doi.org/10.1007/978-3-319-13770-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13770-4_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13769-8

  • Online ISBN: 978-3-319-13770-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics