Skip to main content

Tachycardia in Septic Shock: Pathophysiological Implications and Pharmacological Treatment

  • Chapter

Part of the book series: Annual Update in Intensive Care and Emergency Medicine 2015 ((AUICEM,volume 2015))

Abstract

Heart rate is measured in every critically ill patient and high values often reflect the severity of underlying disease. Nevertheless, in clinical practice the pathophysiological implications of an increase in heart rate are often undervalued. The importance of elevated heart rate and its role in determining or contributing to cardiovascular diseases began to be recognized at the end of the 1970s. Nowadays, it is clear that tachycardia represents an independent risk factor for mortality and morbidity in several clinical conditions, including coronary artery disease, myocardial infarction, and congestive heart failure [1–7]. Furthermore, it has also been demonstrated that with respect to other cardiovascular factors, a high heart rate is the best predictor of mortality in different categories of patients [6]. Results of numerous large epidemiological trials confirm that an elevated heart rate not only represents a clinical sign of altered cardiac function but also contributes to cardiac dysfunction. Although the role of an elevated heart rate is well established and has clearly been linked to outcome in cardiology patients, the topic has gained less attention in septic patients. To date only a few small clinical studies have evaluated the relationship between increased heart rate and mortality in patients suffering from septic shock. However, the results of such studies strongly suggest that elevated heart rate is a risk factor for increased mortality, even in septic shock patients [8–10]. A reduction in heart rate could, therefore, improve outcomes for septic shock patients by lowering cardiac workload and improving diastolic coronary perfusion of the septic heart. Recently, the results from a monocenter trial that investigated the hemodynamic effects of reducing heart rate with the β-blocker esmolol in septic shock patients attracted the interest of critical care physicians [10]. The aim of this article is to provide an overview of the pathophysiology of sepsis-induced tachycardia and its implications in the clinical management of affected patients.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Copie X, Hnatkova K, Staunton A, Fei L, Camm AJ, Malik M (1996) Predictive power of increased heart rate versus depressed left ventricular ejection fraction and heart rate variability for risk stratification after myocardial infarction. Results of a two-year follow-up study. J Am Coll Cardiol 27:270–276

    Article  CAS  PubMed  Google Scholar 

  2. Dyer AR, Persky V, Stamler J et al (1980) Heart rate is a prognostic factor for coronary heart disease and mortality: findings in three Chicago epidemiologic studies. Am J Epidemiol 112:736–749

    CAS  PubMed  Google Scholar 

  3. Diaz A, Bourassa MG, Guertin MC, Tardif JC (2005) Long-term prognostic value of resting heart rate in patients with suspected or proven coronary artery disease. Eur Heart J 26:967–974

    Article  PubMed  Google Scholar 

  4. Disegni E, Goldbourt U, Reicher-Reiss H et al (1995) The predictive value of admission heart rate on mortality in patients with acute myocardial infarction. SPRINT study group. Secondary Prevention, Reinfarction, Israeli Nifedipine Trial. J Clin Epidemol 48:1197–1205

    Article  CAS  Google Scholar 

  5. Sander O, Welters ID, Foëx P, Sear JW (2005) Impact of prolonged elevated heart rate on incidence of major cardiac events in critically ill patients with a high risk of cardiac complications. Crit Care Med 33:81–88

    Article  PubMed  Google Scholar 

  6. Singh BN (2003) Increased heart rate as a risk factor for cardiovascular disease. Eur Heart J Suppl 5(Suppl G):G3–G9

    Article  Google Scholar 

  7. Kannel WB, Kannel C, Paffenberger RS Jr, Cupples LA (1987) Heart rate and cardiovascular mortality: the Framingham study. Am Heart J 113:1489–1494

    Article  CAS  PubMed  Google Scholar 

  8. Azimi G, Vincent JL (1986) Ultimate survival from septic shock. Resuscitation 14:245–253

    Article  CAS  PubMed  Google Scholar 

  9. Parker MM, Shelhamer JH, Natanson C, Alling DW, Parrillo JE (1987) Serial cardiovascular variables in survivors and nonsurvivors of human septic shock: heart rate as an early predictor of prognosis. Crit Care Med 15:923–929

    Article  CAS  PubMed  Google Scholar 

  10. Morelli A, Ertmer C, Westphal M et al (2013) Effect of heart rate control with esmolol on hemodynamic and clinical outcomes in patients with septic shock: a randomized clinical trial. JAMA 310:1683–1691

    Article  PubMed  Google Scholar 

  11. Leibovici L, Gafter-Gvili A, Paul M et al (2007) Relative tachycardia in patients with sepsis: an independent risk factor for mortality. QJM 100:629–634

    Article  CAS  PubMed  Google Scholar 

  12. Schmittinger CA, Torgersen C, Luckner G, Schröder DC, Lorenz I, Dünser MW (2012) Adverse cardiac events during catecholamine vasopressor therapy: a prospective observational study. Intensive Care Med 38:950–958

    Article  CAS  PubMed  Google Scholar 

  13. Bhagat K, Hingorani AD, Palacios M, Charles IG, Vallance P (1999) Cytokine-induced venodilatation in humans in vivo: eNOS masquerading as iNOS. Cardiovasc Res 41:754–764

    Article  CAS  PubMed  Google Scholar 

  14. Marx G, Vangerow B, Burczyk C et al (2000) Evaluation of noninvasive determinants for capillary leakage syndrome in septic shock patients. Intensive Care Med 26:1252–1258

    Article  CAS  PubMed  Google Scholar 

  15. Parillo JE (1993) Pathogenetic mechanisms of septic shock. N Engl J Med 328:1471–1477

    Article  Google Scholar 

  16. Dellinger RP, Levy MM, Rhodes A (2013) Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med 41:580–637

    Article  PubMed  Google Scholar 

  17. Dünser MW, Hasibeder WR (2009) Sympathetic overstimulation during critical illness: adverse effects of adrenergic stress. J Intensive Care Med 24:293–316

    Article  PubMed  Google Scholar 

  18. Rudiger A, Singer M (2013) The heart in sepsis. Curr Vasc Pharmacol 11:187–195

    CAS  PubMed  Google Scholar 

  19. Schmidt H, Muller-Werdan U, Hoffmann T et al (2005) Autonomic dysfunction predicts mortality in patients with multiple organ dysfunction syndrome of different age groups. Crit Care Med 33:1994–2002

    Article  PubMed  Google Scholar 

  20. Sharshar T, Gray F, de la Lorin Grandmaison G et al (2003) Apoptosis of neurons in cardiovascular autonomic centres triggered by inducible nitric oxide synthase after death from septic shock. Lancet 362:1799–1805

    Article  CAS  PubMed  Google Scholar 

  21. Magder SA (2012) The ups and downs of heart rate. Crit Care Med 40:239–245

    Article  PubMed  Google Scholar 

  22. Werdan K, Schmidt H, Ebelt H et al (2009) Impaired regulation of cardiac function in sepsis, SIRS, and MODS. Can J Physiol Pharmacol 87:266–274

    Article  CAS  PubMed  Google Scholar 

  23. Musialek P, Lei M, Brown HF, Paterson DJ, Casadei B (1997) Nitric oxide can increase heart rate by stimulating the hyperpolarization-activated inward current, I(f). Circ Res 81:60–68

    Article  CAS  PubMed  Google Scholar 

  24. Aoki Y, Hatakeyama N, Yamamoto S et al (2012) Role of ion channels in sepsis-induced atrial tachyarrhythmias in guinea pigs. Br J Pharmacol 166:390–400

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Vieillard-Baron A, Caille V, Charron C, Belliard G, Page B, Jardin F (2008) Actual incidence of global left ventricular hypokinesia in adult septic shock. Crit Care Med 36:1701–1706

    Article  PubMed  Google Scholar 

  26. Guarracino F, Baldassarri R, Pinsky MR (2013) Ventriculo-arterial decoupling in acutely altered hemodynamic states. Crit Care 17:213

    Article  PubMed Central  PubMed  Google Scholar 

  27. Guarracino F, Ferro B, Morelli A, Bertini P, Baldassarri R, Pinsky MR (2014) Ventriculoarterial decoupling in human septic shock. Crit Care 18:R80

    Article  PubMed Central  PubMed  Google Scholar 

  28. Notarius CF, Levy RD, Tully A et al (1998) Cardiac vs. non-cardiac limits to exercise following heart transplantation. Am Heart J 135:339–348

    Article  CAS  PubMed  Google Scholar 

  29. Joulin O, Marechaux S, Hassoun S, Montaigne D, Lancel S, Neviere R (2009) Cardiac force–frequency relationship and frequency-dependent acceleration of relaxation are impaired in LPS-treated rats. Crit Care 13:R14

    Article  PubMed Central  PubMed  Google Scholar 

  30. Masutani S, Cheng HJ, Tachibana H, Little WC, Cheng CP (2011) Levosimendan restores the positive force-frequency relation in heart failure. Am J Physiol Heart Circ Physiol 301:H488–H496

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Kern MJ (2000) Coronary physiology revisited: practical insights from the cardiac catheterization laboratory. Circulation 101:1344–1351

    Article  CAS  PubMed  Google Scholar 

  32. Grosse P, Clementy J (1995) Coronary reserve in experimental myocardial hypertrophy. Eur Heart J 16(Suppl 1):22–25

    Article  Google Scholar 

  33. Marik PE (2006) Management of the critically ill geriatric patient. Crit Care Med 34:176–182

    Article  Google Scholar 

  34. Balik M, Rulisek J, Leden P et al (2012) Concomitant use of beta-1 adrenoreceptor blocker and norepinephrine in patients with septic shock. Wien Klin Wochenschr 124:552–556

    Article  CAS  PubMed  Google Scholar 

  35. Morelli A, Donati A, Ertmer C et al (2013) Microvascular effects of heart rate control with esmolol in patients with septic shock: a pilot study. Crit Care Med 41:2162–2168

    Article  CAS  PubMed  Google Scholar 

  36. Schmittinger CA, Dünser MW, Haller M et al (2008) Combined milrinone and enteral metoprolol therapy in patients with septic myocardial depression. Crit Care 12:R99

    Article  PubMed Central  PubMed  Google Scholar 

  37. Kumar A, Schupp E, Bunnell E, Ali A, Milcarek B, Parrillo JE (2008) Cardiovascular response to dobutamine stress predicts outcome in severe sepsis and septic shock. Crit Care 12:R35

    Article  PubMed Central  PubMed  Google Scholar 

  38. Gore DC, Wolfe RR (2006) Hemodynamic and metabolic effects of selective beta1 adrenergic blockade during sepsis. Surgery 139:686–694

    Article  PubMed  Google Scholar 

  39. Volz-Zang C, Eckrich B, Jahn P, Schneidrowski B, Schulte B, Palm D (1994) Esmolol, an ultrashort acting selective beta 1-adrenoreceptor antagonist: pharmacodynamic and pharmacokinetic properties. Eur J Clin Pharmacol 46:399–404

    Article  CAS  PubMed  Google Scholar 

  40. Berk JL, Hagen JF, Beyer WH, Gerber MJ, Dochat GR (1969) The treatment of endotoxin shock by beta adrenergic blockade. Ann Surg 169:74–81

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Morelli A, D’Egidio A, Orecchioni A, Marraffa E, Romano S (2014) Heart rate reduction with Esmolol in septic shock: effects on myocardial performance. Crit Care 18(Suppl 1):P162

    Article  PubMed Central  Google Scholar 

  42. Suzuki T, Morisaki H, Serita R et al (2005) Infusion of the beta-adrenergic blocker esmolol attenuates myocardial dysfunction in septic rats. Crit Care Med 33:2294–2301

    Article  CAS  PubMed  Google Scholar 

  43. Macchia A, Romero M, Comignani et al (2012) Previous prescription of β-blockers is associated with reduced mortality among patients hospitalized in intensive care units for sepsis. Crit Care Med 40:2768–2772

    Article  PubMed  Google Scholar 

  44. De Santis V, Frati G, Greco E, Tritapepe L (2014) Ivabradine: a preliminary observation for a new terapeutic role in patients with multiple organ dysfunction syndrome. Clin Res Cardiol 103:831–834

    Article  PubMed Central  PubMed  Google Scholar 

  45. Fox KM, Ferrari R (2011) Heart rate: a forgotten link in coronary artery disease? Nat Rev Cardiol :369–379

    Google Scholar 

  46. Nuding S, Ebelt H, Hoke RS et al (2011) Reducing elevated heart rate in patients with multiple organ dysfunction syndrome by the If (funny channel current) inhibitor ivabradine. MODIfY Trial. Clin Res Cardiol 100:915–23

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Morelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Morelli, A., D’Egidio, A., Passariello, M. (2015). Tachycardia in Septic Shock: Pathophysiological Implications and Pharmacological Treatment. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2015. Annual Update in Intensive Care and Emergency Medicine 2015, vol 2015. Springer, Cham. https://doi.org/10.1007/978-3-319-13761-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13761-2_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13760-5

  • Online ISBN: 978-3-319-13761-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics