Skip to main content

Part of the book series: Annual Update in Intensive Care and Emergency Medicine 2015 ((AUICEM,volume 2015))

Abstract

The initial response to the question, “How does volume make the blood go around?”, is usually something like: Volume stretches the left ventricular wall and the greater the stretch the greater the stroke output from the left heart because of an increase in preload as first described by Otto Frank and Ernest Starling. While this is true, it is just part of the role that volume plays in the generation of flow around the circulation. At the beginning of the last century, Ernst Starling appreciated the fundamental point that the heart only can pump out what it receives and factors that affect the return of blood to the heart play a key role in what comes back to the heart [1]. The basic principle in this chapter is that the elastic properties of vascular structures are key determinants of the distribution and movement of the blood volume around the circulation. The discussion will revolve around how the distribution of compliances in the circulation, the concepts of stressed and unstressed volume [2, 3], and Sagawa’s concept of time varying elastance of the ventricles [4] explain how much blood flows around the circulation for a given amount of blood volume. Many of the concepts in this paper are derived from a computerized computational model that we have applied to the circulation [5, 6] as well as measurements in animal studies [7–9]. Although a computational analysis does not indicate exactly what goes on in a living organism, its advantage is that one variable can be changed at a time, which allows an analysis of changes in the mechanical properties of the vasculature in steady states. The real-life situation is a composite of these isolated mechanical changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Starling EH (1918) The Linacre Lecture of the Law of the Heart. Longmans, Green & Co, London

    Google Scholar 

  2. Magder S, De Varennes B (1998) Clinical death and the measurement of stressed vascular volume. Crit Care Med 26:1061–1064

    Article  CAS  PubMed  Google Scholar 

  3. Rothe CF (1983) Reflex control of veins and vascular capacitance. Physiol Rev 63:1281–1295

    CAS  PubMed  Google Scholar 

  4. Sagawa K (1978) The ventricular pressure-volume diagram revisited. Circ Res 43:677–687

    Article  CAS  PubMed  Google Scholar 

  5. Magder S, Veerassamy S, Bates JH (2009) A further analysis of why pulmonary venous pressure rises after the onset of LV dysfunction. J Appl Physiol 106:81–90

    Article  CAS  PubMed  Google Scholar 

  6. Magder S, Guerard B (2012) Heart-lung interactions and pulmonary buffering: Lessons from a computational modeling study. Respir Physiol Neurobiol 182:60–70

    Article  PubMed  Google Scholar 

  7. Deschamps A, Magder S (1994) Effects of heat stress on vascular capacitance. Am J Physiol 266:H2122–H2129

    CAS  PubMed  Google Scholar 

  8. Deschamps A, Magder S (1992) Baroreflex control of regional capacitance and blood flow distribution with or without alpha adrenergic blockade. J Appl Physiol 263:H1755–H1763

    CAS  Google Scholar 

  9. Deschamps A, Fournier A, Magder S (1994) Influence of neuropeptide Y on regional vascular capacitance in dogs. Am J Physiol 266:H165–H170

    CAS  PubMed  Google Scholar 

  10. Green JF (1987) Fundamental Cardiovascular and Pulmonary Physiology, 2nd edn. Lea and Febiger, Philadelphia

    Google Scholar 

  11. Guyton AC, Polizo D, Armstrong GG (1954) Mean circulatory filling pressure measured immediately after cessation of heart pumping. Am J Physiol 179:261–267

    CAS  PubMed  Google Scholar 

  12. Jellinek H, Krenn H, Oczenski W, Veit F, Schwarz S, Fitzgerald RD (2000) Influence of positive airway pressure on the pressure gradient for venous return in humans. J Appl Physiol 88:926–932

    CAS  PubMed  Google Scholar 

  13. Schipke JD, Heusch G, Sanii AP, Gams E, Winter J (2003) Static filling pressure in patients during induced ventricular fibrillation. Am J Physiol Heart Circ Physiol 285(6):H2510–H2515

    CAS  PubMed  Google Scholar 

  14. Parkin WG, Leaning MS (2008) Therapeutic control of the circulation. J Clin Monit Comput 22:391–400

    Article  PubMed  Google Scholar 

  15. Parkin WG (1999) Volume state control – a new approach. Crit Care Resusc 1:311–21

    CAS  PubMed  Google Scholar 

  16. Persichini R, Silva S, Teboul JL et al (2012) Effects of norepinephrine on mean systemic pressure and venous return in human septic shock. Crit Care Med 40:3146–3153

    Article  CAS  PubMed  Google Scholar 

  17. Rothe CF, Drees JA (1976) Vascular capacitance and fluid shifts in dogs during prolonged hemorrhagic hypotension. Circ Res 38:347–356

    Article  CAS  PubMed  Google Scholar 

  18. Magder SA (2012) The ups and downs of heart rate. Crit Care Med 40(1):239–45

    Article  PubMed  Google Scholar 

  19. Shrier I, Magder S (1993) Response of arterial resistance and critical closing pressure to change in perfusion pressure in canine hindlimb. Am J Physiol 265:H1939–H1945

    CAS  PubMed  Google Scholar 

  20. Shrier I, Hussain SNA, Magder SA (1993) Carotid sinus stimulation influences both arterial resistance and critical closing pressure of the isolated hindlimb vascular bed. Am J Physiol 33:H1560–H1566

    Google Scholar 

  21. Magder S (2013) Is all on the level? Hemodynamics during supine versus prone ventilation. Am J Respir Crit Care Med 188:1390–1391

    Article  PubMed  Google Scholar 

  22. Permutt S, Riley S (1963) Hemodynamics of collapsible vessels with tone: the vascular waterfall. J Appl Physiol 18:924–932

    CAS  PubMed  Google Scholar 

  23. Magder S, Scharf SM (2001) Venous return. In: Scharf SM, Pinsky MR, Magder SA (eds) Respiratory-Circulatory Interactions in Health and Diseas, 2nd edn. Marcel Dekker Inc, New York, pp 93–112

    Google Scholar 

  24. Magder S (2011) Hemodynamic monitoring in the mechanically ventilated patient. Curr Opin Crit Care 17:36–42

    Article  PubMed  Google Scholar 

  25. Magder S (2010) Mechanical interactions between the respiratory and circulatory systems. In: Bradley TD, Floras JS (eds) Sleep Apnea: Implications in Ccardiovascular and Cerebrovascular Disease. Informa Health Care USA, Inc, New York, pp 40–60

    Google Scholar 

  26. Magder SA, Lichtenstein S, Adelman AG (1983) Effects of negative pleural pressure on left ventricular hemodynamics. Am J Cardiol 52:588–593

    Article  CAS  PubMed  Google Scholar 

  27. Jansen JR, Maas JJ, Pinsky MR (2010) Bedside assessment of mean systemic filling pressure. Curr Opin Crit Care 16:231–236

    Article  PubMed  Google Scholar 

  28. Maas JJ, Geerts BF, van den Berg PC, Pinsky MR, Jansen JR (2009) Assessment of venous return curve and mean systemic filling pressure in postoperative cardiac surgery patients. Crit Care Med 37:912–918

    Article  PubMed  Google Scholar 

  29. Magder S (2012) An approach to hemodynamic monitoring: Guyton at the beside. Crit Care 16:236–243

    Article  PubMed Central  PubMed  Google Scholar 

  30. Guyton AC (1955) Determination of cardiac output by equating venous return curves with cardiac response curves. Physiol Rev 35:123–129

    CAS  PubMed  Google Scholar 

  31. Fessler HE, Brower RG, Wise RA, Permutt S (1992) Effects of positive end-expiratory pressure on the gradient for venous return. Am Rev Respir Dis 146:4–10

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Magder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Magder, S. (2015). How Does Volume Make the Blood Go Around?. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2015. Annual Update in Intensive Care and Emergency Medicine 2015, vol 2015. Springer, Cham. https://doi.org/10.1007/978-3-319-13761-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13761-2_23

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13760-5

  • Online ISBN: 978-3-319-13761-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics