Skip to main content

Assessing Global Perfusion During Sepsis: SvO2, Venoarterial PCO2 Gap or Both?

  • Chapter
Annual Update in Intensive Care and Emergency Medicine 2015

Part of the book series: Annual Update in Intensive Care and Emergency Medicine 2015 ((AUICEM,volume 2015))

Abstract

Systemic blood flow can be measured easily at the bedside in critically ill patients. However, measuring cardiac output cannot tell much about the adequacy of systemic blood flow for global metabolic conditions. For example, a cardiac output of 5 l/min, which is normal in a healthy human at rest, is abnormally low during exercise or under other conditions of marked increase in oxygen (O2) demand, such as sepsis. Therefore, the simple measurement of cardiac output cannot provide sufficient information about the need to increase systemic blood flow. The mixed venous blood O2 saturation (SvO2) and the difference between mixed venous and arterial blood carbon dioxide (CO2) pressures (PCO2 gap) have been proposed to assess the adequacy of cardiac output to metabolic conditions and thus to serve to evaluate the need to increase cardiac output. Since central venous catheters are now more often inserted than pulmonary artery catheters (PACs) in critically ill patients, O2 saturation measured in a central vein (ScvO2) and the difference between CO2 pressure in a central vein and arterial CO2 pressure have been proposed as substitutes for SvO2 and PCO2 gap, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weber KT, Andrews V, Janicki JS et al (1981) Amrinone and exercice performance in patients with chronic heart failure. Am J Cardiol 48:164–169

    Article  CAS  PubMed  Google Scholar 

  2. Kasnitz P, Druger GL, Yorra F, Simmons DH (1976) Mixed venous oxygen tension and hyperlactatemia. JAMA 236:570–574

    Article  CAS  PubMed  Google Scholar 

  3. Astiz ME, Rackow EC (1998) Septic shock. Lancet 351:1501–1505

    Article  CAS  PubMed  Google Scholar 

  4. Vincent JL, De Backer D (2013) Circulatory shock. N Engl J Med 369:1726–1734

    Article  CAS  PubMed  Google Scholar 

  5. Dubin A, Pozo MO, Casabella CA et al (2009) Increasing arterial blood pressure with norepinephrine does not improve microcirculatory blood flow: a prospective study. Crit Care 13:R92

    Article  PubMed Central  PubMed  Google Scholar 

  6. Hamzaoui O, Georger JF, Monnet X et al (2010) Early administration of norepinephrine increases cardiac preload and cardiac output in septic patients with life-threatening hypotension. Crit Care 14:R142

    Article  PubMed Central  PubMed  Google Scholar 

  7. Monnet X, Jabot J, Maizel J, Richard C, Teboul JL (2011) Norepinephrine increases cardiac preload and reduces preload dependency assessed by passive leg raising in septic shock patients. Crit Care Med 39:689–694

    Article  CAS  PubMed  Google Scholar 

  8. Teboul JL, Hamzaoui O, Monnet X (2011) SvO2 to monitor resuscitation of septic patients: let’s just understand the basic physiology. Crit Care 15:1005

    Article  PubMed Central  PubMed  Google Scholar 

  9. Dellinger RP, Levy MM, Rhodes A et al (2013) Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med 41:580–637

    Article  PubMed  Google Scholar 

  10. Yu M, Burchell S, Hasaniya NW, Takanishi DM, Myers SA, Takiguchi SA (1998) Relationship of mortality to increasing oxygen delivery in patients > 50 years of age: A prospective, randomized trial. Crit Care Med 26:1011–1019

    Article  CAS  PubMed  Google Scholar 

  11. Friedman G, De Backer D, Shahla M, Vincent JL (1998) Oxygen supply dependency can characterize septic shock. Intensive Care Med 24:118–123

    Article  CAS  PubMed  Google Scholar 

  12. Martin C, Viviand X, Vialet ASR, Rougnon T (1999) Effects of norepinephrine plus dobutamine or norepinephrine alone on left ventricular performance of septic shock patients. Crit Care Med 27:1708–1713

    Article  CAS  PubMed  Google Scholar 

  13. Teboul JL, Boujdaria R, Graini L, Berton C, Richard C (1993) Cardiac index vs oxygen-derived parameters for rational use of dobutamine in patients with congestive heart failure. Chest 103:81–85

    Article  CAS  PubMed  Google Scholar 

  14. De Backer D, Moraine JJ, Berré J, Kahn RJ, Vincent JL (1994) Effects of dobutamine on oxygen consumption in septic patients. Direct versus indirect determinations. Am J Respir Crit Care Med 150:95–100

    Article  PubMed  Google Scholar 

  15. Gattinoni L, Brazzi L, Pelosi P et al (1995) A trial of goal-oriented hemodynamic therapy in critically ill patients. SvO2 Collaborative Group. N Engl J Med 333:1025–1032

    Article  CAS  PubMed  Google Scholar 

  16. Krafft P, Steltzer H, Hiesmayr M, Klimscha W, Hammerle AF (1993) Mixed venous oxygen saturation in critically ill septic shock patients. The role of defined events. Chest 103:900–906

    Article  CAS  PubMed  Google Scholar 

  17. Jain A, Shroff SG, Janicki JS, Reddy HK, Weber KT (1991) Relation between mixed venous oxygen saturation and cardiac index. Nonlinearity and normalization for oxygen uptake and hemoglobin. Chest 99:1403–1409

    Article  CAS  PubMed  Google Scholar 

  18. Ronco JJ, Fenwick JC, Wiggs BR, Phang PT, Russell JA, Tweeddale MG (1993) Oxygen consumption is dependent of increases in oxygen delivery by dobutamine in septic patients who have normal or increased plasma lactate. Am Rev Respir Dis 147:25–31

    Article  CAS  PubMed  Google Scholar 

  19. Hayes MA, Timmins AC, Yau EH, Palazzo M, Watson D, Hinds CJ (1997) Oxygen transport patterns in patients with sepsis syndrome or septic shock: Influence of treatment and relationship to outcome. Crit Care Med 25:926–936

    Article  CAS  PubMed  Google Scholar 

  20. Scuderi PE, Bowton DL, Meredith JW, Harris LC, Evans JB, Anderson RL (1992) A comparison of three pulmonary artery oximetry catheters in Intensive Care Unit patients. Chest 102:896–905

    Article  CAS  PubMed  Google Scholar 

  21. Wiener RS, Welch HG (2007) Trends in the use of the pulmonary artery catheter in the United States, 1993–2004. JAMA 298:423–429

    Article  CAS  PubMed  Google Scholar 

  22. Rivers E, Nguyen B, Havstad S et al (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377

    Article  CAS  PubMed  Google Scholar 

  23. Chawla LS, Zia H, Gutierrez G, Katz NM, Seneff MG, Shah M (2004) Lack of equivalence between central and mixed venous oxygen saturation. Chest 126:1891–1896

    Article  PubMed  Google Scholar 

  24. Reinhart K, Kuhn HJ, Hartog C, Bredle DL (2004) Continuous central venous and pulmonary artery oxygen saturation monitoring in the critically ill. Intensive Care Med 30:1572–1578

    Article  PubMed  Google Scholar 

  25. Dueck MH, Klimek M, Appenrodt S, Weigand C, Boerner U (2005) Trends but not individual values of central venous oxygen saturation agree with mixed venous oxygen saturation during varying hemodynamic conditions. Anesthesiology 103:249–257

    Article  PubMed  Google Scholar 

  26. Varpula M, Karlsson S, Ruokonen E, Pettilä V (2006) Mixed venous oxygen saturation cannot be estimated by central venous oxygen saturation in septic shock. Intensive Care Med 32:1336–1343

    Article  PubMed  Google Scholar 

  27. Gutierrez G, Comignani P, Huespe L et al (2008) Central venous to mixed venous blood oxygen and lactate gradients are associated with outcome in critically ill patients. Intensive Care Med 34:1662–1668

    Article  PubMed  Google Scholar 

  28. van Beest PA, van Ingen J, Boerma EC et al (2010) No agreement of mixed venous and central venous saturation in sepsis, independent of sepsis origin. Crit Care 14:R219

    Article  PubMed Central  PubMed  Google Scholar 

  29. Monnet X, Julien F, Ait-Hamou N et al (2013) Lactate and veno-arterial carbon dioxide difference/arterial-venous oxygen difference ratio, but not central venous oxygen saturation, predict increase in oxygen consumption in fluid responders. Crit Care Med 41:1412–1420

    Article  CAS  PubMed  Google Scholar 

  30. van Beest PA, Hofstra JJ, Schultz MJ, Boerma EC, Spronk PE, Kuiper MA (2008) The incidence of low venous oxygen saturation on admission to the intensive care unit: a multi-center observational study in The Netherlands. Crit Care 12:R33

    Article  PubMed Central  PubMed  Google Scholar 

  31. Pope JV, Jones AE, Gaieski DF, Arnold RC, Trzeciak S, Shapiro NI (2010) Multicenter study of central venous oxygen saturation (ScvO(2)) as a predictor of mortality in patients with sepsis. Ann Emerg Med 55:40–46

    Article  PubMed Central  PubMed  Google Scholar 

  32. Velissaris D, Pierrakos C, Scolletta S, De Backer D, Vincent JL (2011) High mixed venous oxygen saturation levels do not exclude fluid responsiveness in critically ill septic patients. Crit Care 15:R177

    Article  PubMed Central  PubMed  Google Scholar 

  33. Lamia B, Monnet X, Teboul JL (2006) Meaning of arterio-venous PCO2 difference in circulatory shock. Minerva Anestesiol 72:597–604

    CAS  PubMed  Google Scholar 

  34. Groeneveld AB (1998) Interpreting the venous-arterial PCO2 difference. Crit Care Med 26:979–980

    Article  CAS  PubMed  Google Scholar 

  35. Teboul JL, Mercat A, Lenique F, Berton C, Richard C (1998) Value of the venous-arterial PCO2 gradient to reflect the oxygen supply to demand in humans: effects of dobutamine. Crit Care Med 26:1007–1010

    Article  Google Scholar 

  36. Zhang H, Vincent JL (1993) Arteriovenous differences in PCO2 and pH are good indicators of critical hypoperfusion. Am Rev Respir Dis 148:867–871

    Article  CAS  PubMed  Google Scholar 

  37. Vallet B, Teboul JL, Cain S, Curtis S (2000) Venoarterial CO(2) difference during regional ischemic or hypoxic hypoxia. J Appl Physiol 89:1317–1321

    CAS  PubMed  Google Scholar 

  38. Nevière R, Chagnon JL, Teboul JL, Vallet B, Wattel F (2002) Small intestine intramucosal PCO(2) and microvascular blood flow during hypoxic and ischemic hypoxia. Crit Care Med 30:379–384

    Article  PubMed  Google Scholar 

  39. Mecher CE, Rackow EC, Astiz ME, Weil MH (1990) Venous hypercarbia associated with severe sepsis and systemic hypoperfusion. Crit Care Med 18:585–589

    Article  CAS  PubMed  Google Scholar 

  40. Bakker J, Vincent JL, Gris P, Leon M, Coffernils M, Kahn RJ (1992) Veno-arterial carbon dioxide gradient in human septic shock. Chest 101:509–515

    Article  CAS  PubMed  Google Scholar 

  41. Wendon JA, Harrison PM, Keays R, Gimson AE, Alexander G, Williams R (1991) Arterial-venous pH differences and tissue hypoxia in patients with fulminant hepatic failure. Crit Care Med 19:1362–1364

    Article  CAS  PubMed  Google Scholar 

  42. Cohen IL, Sheikh FM, Perkins RJ, Feustel PJ, Foster ED (1995) Effect of hemorrhagic shock and reperfusion on the respiratory quotient in swine. Crit Care Med 23:545–552

    Article  CAS  PubMed  Google Scholar 

  43. Mekontso-Dessap A, Castelain V, Anguel N et al (2002) Combination of venoarterial PCO2 difference with arteriovenous O2 content difference to detect anaerobic metabolism in patients. Intensive Care Med 28:272–277

    Article  PubMed  Google Scholar 

  44. Cuschieri J, Rivers EP, Donnino MW et al (2005) Central venous-arterial carbon dioxide difference as an indicator of cardiac index. Intensive Care Med 31:818–822

    Article  PubMed  Google Scholar 

  45. van Beest PA, Lont MC, Holman ND, Loef B, Kuiper MA, Boerma EC (2013) Central venous-arterial pCO2 difference as a tool in resuscitation of septic patients. Intensive Care Med 39:1034–1039

    Article  CAS  PubMed  Google Scholar 

  46. Mallat J, Benzidi Y, Salleron J et al (2014) Time course of central venous-to-arterial carbon dioxide tension difference in septic shock patients receiving incremental doses of dobutamine. Intensive Care Med 40:404–411

    Article  CAS  PubMed  Google Scholar 

  47. Vallet B, Pinsky MR, Cecconi M (2013) Resuscitation of patients with septic shock: please “mind the gap”! Intensive Care Med 39:1653–1655

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Vallée F, Vallet B, Mathe O et al (2008) Central venous-to-arterial carbon dioxide difference: an additional target for goal-directed therapy in septic shock? Intensive Care Med 34:2218–2225

    Article  PubMed  Google Scholar 

  49. Du W, Liu DW, Wang WT et al (2013) Combining central venous-to-arterial partial pressure of carbon dioxide difference and central venous oxygen saturation to guide resuscitation in septic shock. J Crit Care 28:1110e1–1110e5

    Article  Google Scholar 

  50. Mallat J, Pepy F, Lemyze M et al (2014) Central venous-to-arterial carbon dioxide partial pressure difference in early resuscitation from septic shock: a prospective observational study. Eur J Anaesthesiol 31:371–380

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-L. Teboul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Teboul, JL., Monnet, X. (2015). Assessing Global Perfusion During Sepsis: SvO2, Venoarterial PCO2 Gap or Both?. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2015. Annual Update in Intensive Care and Emergency Medicine 2015, vol 2015. Springer, Cham. https://doi.org/10.1007/978-3-319-13761-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13761-2_19

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13760-5

  • Online ISBN: 978-3-319-13761-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics