Advertisement

New Insights on the Signaling and Function of the High-Affinity Receptor for IgE

  • Ryo Suzuki
  • Jörg Scheffel
  • Juan RiveraEmail author
Chapter
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 388)

Abstract

Clustering of the high-affinity receptor for immunoglobulin E (FcεRI ) through the interaction of receptor-bound immunoglobulin E (IgE ) antibodies with their cognate antigen is required to couple IgE antibody production to cellular responses and physiological consequences. IgE -induced responses through FcεRI are well known to defend the host against certain infectious agents and to lead to unwanted allergic responses to normally innocuous substances. However, the cellular and/or physiological response of individuals that produce IgE antibodies may be markedly different and such antibodies (even to the same antigenic epitope) can differ in their antigen-binding affinity. How affinity variation in the interaction of FcεRI -bound IgE antibodies with antigen is interpreted into cellular responses and how the local environment may influence these responses is of interest. In this chapter, we focus on recent advances that begin to unravel how FcεRI distinguishes differences in the affinity of IgE –antigen interactions and how such discrimination along with surrounding environmental stimuli can shape the (patho) physiological response.

Keywords

Mast Cell Mast Cell Degranulation Human Mast Cell Total Internal Reflection Fluorescence Microscopy Brutons Tyrosine Kinase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

BCR

B cell receptor

BTK

Bruton’s tyrosine kinase

CBMC

Cord blood-derived mast cells

DAG

Diacylglycerol

DNP

Dinitrophenyl

ERK

Extracellular signal-regulated kinase

FcεRI

High-affinity receptor for immunoglobulin E

FRAP

Fluorescence recovery after photobleaching

FSMC

Fetal skin-derived mast cells

GAB2

GRB2-associated-binding protein 2

GFP

Green fluorescent protein

GIRKs

G-protein-coupled inwardly rectifying potassium channels

GM-CSF

Granulocyte macrophage colony-stimulating factor

HC

Highly cytokinergic

HSA

Human serum albumin

IgE

Immunoglobulin E

IP3

Inositol 1,4,5, triphosphate

ITAM

Immunoreceptor tyrosine-based activation motif

ITIM

Immunoreceptor tyrosine-based inhibitory motif

JNK

c-Jun N-terminal protein kinase

LAT1

Linker for activation of T cells

LAT2

Linker for activation of T cells family, member 2

LIF

Leukemia inhibitory factor

LTC4

Leukotriene C4

MAP Kinase

Mitogen-activated protein kinase

MCP-1

Monocyte chemoattractant protein-1

MIP-1

Macrophage inflammatory proteins-1

MITF

Microphthalmia transcription factor

NFAT

Nuclear factor of activated T cells

PC

Poorly cytokinergic

PCA

Passive cutaneous anaphylaxis

PI3-K

Phosphoinositide 3-kinase

PIP

Phosphatidylinositol 4,5 bisphosphate

PKC

Protein kinase C

PLC

Phospholipase C

PTK

Protein tyrosine kinase

QD

Quantum dot

RBL-2H3

Rat basophilic leukemia subclone-2H3

STAT

Signal transducer and activator of transcription

Syk

Spleen tyrosine kinase

TIRF

Total internal reflection fluorescence

TLR

Toll-like receptor

TNF

Tumor necrosis factor

TRB3

Tribbles homolog 3

VEGF

Vascular endothelial growth factor

References

  1. Adachi S, Nakano T, Vliagoftis H, Metcalfe DD (1999) Receptor-mediated modulation of murine mast cell function by alpha-melanocyte stimulating hormone. J Immunol 163(6):3363–3368PubMedGoogle Scholar
  2. Alm E, Bloom GD (1982) Cyclic nucleotide involvement in histamine release from mast cells–a reevaluation. Life Sci 30(3):213–218PubMedGoogle Scholar
  3. Andrews NL, Pfeiffer JR, Martinez AM, Haaland DM, Davis RW, Kawakami T, Oliver JM, Wilson BS, Lidke DS (2009) Small, mobile FcεRI receptor aggregates are signaling competent. Immunity 31(3):469–479PubMedCentralPubMedGoogle Scholar
  4. Arock M, Zuany-Amorim C, Singer M, Benhamou M, Pretolani M (1996) Interleukin-10 inhibits cytokine generation from mast cells. Eur J Immunol 26(1):166–170PubMedGoogle Scholar
  5. Avila M, Martinez-Juarez A, Ibarra-Sanchez A, Gonzalez-Espinosa C (2012) Lyn kinase controls TLR4-dependent IKK and MAPK activation modulating the activity of TRAF-6/TAK-1 protein complex in mast cells. Innate Immun 18(4):648–660PubMedGoogle Scholar
  6. Bachelet I, Munitz A, Mankutad D, Levi-Schaffer F (2006) Mast cell costimulation by CD226/CD112 (DNAM-1/Nectin-2): a novel interface in the allergic process. J Biol Chem 281(37):27190–27196PubMedGoogle Scholar
  7. Bachelet I, Munitz A, Moretta A, Moretta L, Levi-Schaffer F (2005) The inhibitory receptor IRp60 (CD300a) is expressed and functional on human mast cells. J Immunol 175(12):7989–7995PubMedGoogle Scholar
  8. Barrow AD, Astoul E, Floto A, Brooke G, Relou IA, Jennings NS, Smith KG, Ouwehand W, Farndale RW, Alexander DR, Trowsdale J (2004) Cutting edge: TREM-like transcript-1, a platelet immunoreceptor tyrosine-based inhibition motif encoding costimulatory immunoreceptor that enhances, rather than inhibits, calcium signaling via SHP-2. J Immunol 172(10):5838–5842PubMedGoogle Scholar
  9. Birnbaumer L (2007) Expansion of signal transduction by G proteins. The second 15 years or so: from 3 to 16 alpha subunits plus betagamma dimers. Biochim Biophys Acta 1768(4):772–793PubMedCentralPubMedGoogle Scholar
  10. Bischoff SC (2007) Role of mast cells in allergic and non-allergic immune responses: comparison of human and murine data. Nat Rev Immunol 7(2):93–104PubMedGoogle Scholar
  11. Bissonnette EY, Befus AD (1997) Anti-inflammatory effect of β 2-agonists: inhibition of TNF-α release from human mast cells. J Allergy Clin Immunol 100(6 Pt 1):825–831PubMedGoogle Scholar
  12. Bissonnette EY, Enciso JA, Befus AD (1997) TGF-β1 inhibits the release of histamine and tumor necrosis factor-α from mast cells through an autocrine pathway. Am J Respir Cell Mol Biol 16(3):275–282PubMedGoogle Scholar
  13. Carroll-Portillo A, Spendier K, Pfeiffer J, Griffiths G, Li H, Lidke KA, Oliver JM, Lidke DS, Thomas JL, Wilson BS, Timlin JA (2010) Formation of a mast cell synapse: FcεRI membrane dynamics upon binding mobile or immobilized ligands on surfaces. J Immunol 184(3):1328–1338PubMedCentralPubMedGoogle Scholar
  14. Castells MC, Klickstein LB, Hassani K, Cumplido JA, Lacouture ME, Austen KF, Katz HR (2001) gp49B1-α(v)β3 interaction inhibits antigen-induced mast cell activation. Nat Immunol 2(5):436–442PubMedGoogle Scholar
  15. Chaudhary A, Fresquez TM, Naranjo MJ (2007) Tyrosine kinase Syk associates with toll-like receptor 4 and regulates signaling in human monocytic cells. Immunol Cell Biol 85(3):249–256PubMedGoogle Scholar
  16. Cherwinski HM, Murphy CA, Joyce BL, Bigler ME, Song YS, Zurawski SM, Moshrefi MM, Gorman DM, Miller KL, Zhang S, Sedgwick JD, Phillips JH (2005) The CD200 receptor is a novel and potent regulator of murine and human mast cell function. J Immunol 174(3):1348–1356PubMedGoogle Scholar
  17. Cruse G, Kaur D, Yang W, Duffy SM, Brightling CE, Bradding P (2005) Activation of human lung mast cells by monomeric immunoglobulin E. Eur Respir J 25(5):858–863PubMedGoogle Scholar
  18. Daeron M, Malbec O, Latour S, Arock M, Fridman WH (1995) Regulation of high-affinity IgE receptor-mediated mast cell activation by murine low-affinity IgG receptors. J Clin Invest 95(2):577–585PubMedCentralPubMedGoogle Scholar
  19. Edwards LJ, Evavold BD (2011) T cell recognition of weak ligands: roles of signaling, receptor number, and affinity. Immunol Res 50(1):39–48PubMedCentralPubMedGoogle Scholar
  20. Erdei A, Andreev S, Pecht I (1995) Complement peptide C3a inhibits IgE-mediated triggering of rat mucosal mast cells. Int Immunol 7(9):1433–1439PubMedGoogle Scholar
  21. Erdei A, Toth GK, Andrasfalvy M, Matko J, Bene L, Bajtay Z, Ischenko A, Rong X, Pecht I (1999) Inhibition of IgE-mediated triggering of mast cells by complement-derived peptides interacting with the Fc ε RI. Immunol Lett 68(1):79–82PubMedGoogle Scholar
  22. Fehrenbach K, Port F, Grochowy G, Kalis C, Bessler W, Galanos C, Krystal G, Freudenberg M, Huber M (2007) Stimulation of mast cells via FcvarepsilonR1 and TLR2: the type of ligand determines the outcome. Mol Immunol 44(8):2087–2094PubMedGoogle Scholar
  23. Feng C, Beller EM, Bagga S, Boyce JA (2006) Human mast cells express multiple EP receptors for prostaglandin E2 that differentially modulate activation responses. Blood 107(8):3243–3250PubMedCentralPubMedGoogle Scholar
  24. Feoktistov I, Biaggioni I (1995) Adenosine A2b receptors evoke interleukin-8 secretion in human mast cells. An enprofylline-sensitive mechanism with implications for asthma. J Clin Invest 96(4):1979–1986PubMedCentralPubMedGoogle Scholar
  25. Fewtrell C, Metzger H (1980) Larger oligomers of IgE are more effective than dimers in stimulating rat basophilic leukemia cells. J Immunol 125(2):701–710PubMedGoogle Scholar
  26. Furuichi K, Rivera J, Isersky C (1985) The receptor for immunoglobulin E on rat basophilic leukemia cells: effect of ligand binding on receptor expression. Proc Natl Acad Sci USA 82(5):1522–1525Google Scholar
  27. Gao ZG, Wei Q, Jayasekara MP, Jacobson KA (2012) The role of P2Y(14) and other P2Y receptors in degranulation of human LAD2 mast cells. Purinergic Signal 9(1):31–40PubMedCentralPubMedGoogle Scholar
  28. Gebhardt T, Sellge G, Lorentz A, Raab R, Manns MP, Bischoff SC (2002) Cultured human intestinal mast cells express functional IL-3 receptors and respond to IL-3 by enhancing growth and IgE receptor-dependent mediator release. Eur J Immunol 32(8):2308–2316PubMedGoogle Scholar
  29. Gilchrest H, Cheewatrakoolpong B, Billah M, Egan RW, Anthes JC, Greenfeder S (2003) Human cord blood-derived mast cells synthesize and release I-309 in response to IgE. Life Sci 73(20):2571–2581PubMedGoogle Scholar
  30. Gilfillan AM, Beaven MA (2011) Regulation of mast cell responses in health and disease. Crit Rev Immunol 31(6):475–529PubMedCentralPubMedGoogle Scholar
  31. Gomez G, Gonzalez-Espinosa C, Odom S, Baez G, Cid ME, Ryan JJ, Rivera J (2005a) Impaired FcεRI-dependent gene expression and defective eicosanoid and cytokine production as a consequence of Fyn deficiency in mast cells. J Immunol 175(11):7602–7610PubMedGoogle Scholar
  32. Gomez G, Ramirez CD, Rivera J, Patel M, Norozian F, Wright HV, Kashyap MV, Barnstein BO, Fischer-Stenger K, Schwartz LB, Kepley CL, Ryan JJ (2005b) TGF-β 1 inhibits mast cell Fc ε RI expression. J Immunol 174(10):5987–5993PubMedCentralPubMedGoogle Scholar
  33. Gomez G, Nardone V, Lotfi-Emran S, Zhao W, Schwartz LB (2013) Intracellular adenosine inhibits IgE-dependent degranulation of human skin mast cells. J Clin Immunol 33(8):1349–1359PubMedGoogle Scholar
  34. Gonzalez-Espinosa C, Odom S, Olivera A, Hobson JP, Martinez ME, Oliveira-Dos-Santos A, Barra L, Spiegel S, Penninger JM, Rivera J (2003) Preferential signaling and induction of allergy-promoting lymphokines upon weak stimulation of the high affinity IgE receptor on mast cells. J Exp Med 197(11):1453–1465PubMedCentralPubMedGoogle Scholar
  35. Gri G, Piconese S, Frossi B, Manfroi V, Merluzzi S, Tripodo C, Viola A, Odom S, Rivera J, Colombo MP, Pucillo CE (2008) CD4 + CD25 + regulatory T cells suppress mast cell degranulation and allergic responses through OX40-OX40L interaction. Immunity 29(5):771–781PubMedCentralPubMedGoogle Scholar
  36. Grodzki AC, Moon KD, Berenstein EH, Siraganian RP (2009) FcεRI-induced activation by low antigen concentrations results in nuclear signals in the absence of degranulation. Mol Immunol 46(13):2539–2547PubMedCentralPubMedGoogle Scholar
  37. Guthmann MD, Tal M, Pecht I (1995) A new member of the C-type lectin family is a modulator of the mast cell secretory response. Int Arch Allergy Immunol 107(1–3):82–86PubMedGoogle Scholar
  38. Hitomi K, Tahara-Hanaoka S, Someya S, Fujiki A, Tada H, Sugiyama T, Shibayama S, Shibuya K, Shibuya A (2010) An immunoglobulin-like receptor, Allergin-1, inhibits immunoglobulin E-mediated immediate hypersensitivity reactions. Nat Immunol 11(7):601–607PubMedGoogle Scholar
  39. Hlavacek WS, Redondo A, Metzger H, Wofsy C, Goldstein B (2001) Kinetic proofreading models for cell signaling predict ways to escape kinetic proofreading. Proc Natl Acad Sci USA 98(13):7295–7300Google Scholar
  40. Hong H, Kitaura J, Xiao W, Horejsi V, Ra C, Lowell CA, Kawakami Y, Kawakami T (2007) The Src family kinase Hck regulates mast cell activation by suppressing an inhibitory Src family kinase Lyn. Blood 110(7):2511–2519PubMedCentralPubMedGoogle Scholar
  41. Horwood NJ, Page TH, McDaid JP, Palmer CD, Campbell J, Mahon T, Brennan FM, Webster D, Foxwell BM (2006) Bruton’s tyrosine kinase is required for TLR2 and TLR4-induced TNF, but not IL-6, production. J Immunol 176(6):3635–3641PubMedGoogle Scholar
  42. Hsieh FH, Lam BK, Penrose JF, Austen KF, Boyce JA (2001) T helper cell type 2 cytokines coordinately regulate immunoglobulin E-dependent cysteinyl leukotriene production by human cord blood-derived mast cells: profound induction of leukotriene C(4) synthase expression by interleukin 4. J Exp Med 193(1):123–133PubMedCentralPubMedGoogle Scholar
  43. Hughes PJ, Holgate ST, Church MK (1984) Adenosine inhibits and potentiates IgE-dependent histamine release from human lung mast cells by an A2-purinoceptor mediated mechanism. Biochem Pharmacol 33(23):3847–3852PubMedGoogle Scholar
  44. Isersky C, Taurog JD, Poy G, Metzger H (1978) Triggering of cultured neoplastic mast cells by antibodies to the receptor for IgE. J Immunol 121(2):549–558PubMedGoogle Scholar
  45. Isersky C, Rivera J, Mims S, Triche TJ (1979) The fate of IgE bound to rat basophilic leukemia cells. J Immunol 122(5):1926–1936PubMedGoogle Scholar
  46. Ishizaka T, Chang TH, Taggart M, Ishizaka K (1977) Histamine release from rat mast cells by antibodies against rat basophilic leukemia cell membrane. J Immunol 119(5):1589–1596PubMedGoogle Scholar
  47. Ishizuka T, Kawasome H, Terada N, Takeda K, Gerwins P, Keller GM, Johnson GL, Gelfand EW (1998) Stem cell factor augments Fc ε RI-mediated TNF-α production and stimulates MAP kinases via a different pathway in MC/9 mast cells. J Immunol 161(7):3624–3630PubMedGoogle Scholar
  48. Izawa K, Kitaura J, Yamanishi Y, Matsuoka T, Kaitani A, Sugiuchi M, Takahashi M, Maehara A, Enomoto Y, Oki T, Takai T, Kitamura T (2009) An activating and inhibitory signal from an inhibitory receptor LMIR3/CLM-1: LMIR3 augments lipopolysaccharide response through association with FcRγ in mast cells. J Immunol 183(2):925–936PubMedGoogle Scholar
  49. Izawa K, Yamanishi Y, Maehara A, Takahashi M, Isobe M, Ito S, Kaitani A, Matsukawa T, Matsuoka T, Nakahara F, Oki T, Kiyonari H, Abe T, Okumura K, Kitamura T, Kitaura J (2012) The receptor LMIR3 negatively regulates mast cell activation and allergic responses by binding to extracellular ceramide. Immunity 37(5):827–839PubMedGoogle Scholar
  50. Jackola DR, Pierson-Mullany LK, Liebeler CL, Blumenthal MN, Rosenberg A (2002) Variable binding affinities for allergen suggest a ‘selective competition’ among immunoglobulins in atopic and non-atopic humans. Mol Immunol 39(5–6):367–377PubMedGoogle Scholar
  51. James LC, Roversi P, Tawfik DS (2003) Antibody multispecificity mediated by conformational diversity. Science 299(5611):1362–1367PubMedGoogle Scholar
  52. Jefferies CA, Doyle S, Brunner C, Dunne A, Brint E, Wietek C, Walch E, Wirth T, O’Neill LA (2003) Bruton’s tyrosine kinase is a Toll/interleukin-1 receptor domain-binding protein that participates in nuclear factor κB activation by Toll-like receptor 4. J Biol Chem 278(28):26258–26264PubMedGoogle Scholar
  53. Jimenez-Andrade GY, Ibarra-Sanchez A, Gonzalez D, Lamas M, Gonzalez-Espinosa C (2013) Immunoglobulin E induces VEGF production in mast cells and potentiates their pro-tumorigenic actions through a Fyn kinase-dependent mechanism. J Hematol Oncol 6:56PubMedCentralPubMedGoogle Scholar
  54. Jolly PS, Bektas M, Olivera A, Gonzalez-Espinosa C, Proia RL, Rivera J, Milstien S, Spiegel S (2004) Transactivation of sphingosine-1-phosphate receptors by FcεRI triggering is required for normal mast cell degranulation and chemotaxis. J Exp Med 199(7):959–970PubMedCentralPubMedGoogle Scholar
  55. Kalesnikoff J, Huber M, Lam V, Damen JE, Zhang J, Siraganian RP, Krystal G (2001) Monomeric IgE stimulates signaling pathways in mast cells that lead to cytokine production and cell survival. Immunity 14(6):801–811PubMedGoogle Scholar
  56. Kasakura K, Takahashi K, Aizawa T, Hosono A, Kaminogawa S (2009) A TLR2 ligand suppresses allergic inflammatory reactions by acting directly on mast cells. Int Arch Allergy Immunol 150(4):359–369PubMedGoogle Scholar
  57. Kashiwakura J, Otani IM, Kawakami T (2011) Monomeric IgE and mast cell development, survival and function. Adv Exp Med Biol 716:29–46PubMedGoogle Scholar
  58. Kashiwakura J, Okayama Y, Furue M, Kabashima K, Shimada S, Ra C, Siraganian RP, Kawakami Y, Kawakami T (2012) Most highly Cytokinergic IgEs have polyreactivity to autoantigens. Allergy Asthma Immunol Res 4(6):332–340PubMedCentralPubMedGoogle Scholar
  59. Katz HR, Vivier E, Castells MC, McCormick MJ, Chambers JM, Austen KF (1996) Mouse mast cell gp49B1 contains two immunoreceptor tyrosine-based inhibition motifs and suppresses mast cell activation when colligated with the high-affinity Fc receptor for IgE. Proc Natl Acad Sci USA 93(20):10809–10814Google Scholar
  60. Kawakami T, Galli SJ (2002) Regulation of mast-cell and basophil function and survival by IgE. Nat Rev Immunol 2(10):773–786PubMedGoogle Scholar
  61. Kawakami Y, Kitaura J, Hata D, Yao L, Kawakami T (1999) Functions of Bruton’s tyrosine kinase in mast and B cells. J Leukoc Biol 65(3):286–290PubMedGoogle Scholar
  62. Kennedy Norton S, Barnstein B, Brenzovich J, Bailey DP, Kashyap M, Speiran K, Ford J, Conrad D, Watowich S, Moralle MR, Kepley CL, Murray PJ, Ryan JJ (2008) IL-10 suppresses mast cell IgE receptor expression and signaling in vitro and in vivo. J Immunol 180(5):2848–2854PubMedGoogle Scholar
  63. Kitaura J, Eto K, Kinoshita T, Kawakami Y, Leitges M, Lowell CA, Kawakami T (2005) Regulation of highly cytokinergic IgE-induced mast cell adhesion by Src, Syk, Tec, and protein kinase C family kinases. J Immunol 174(8):4495–4504PubMedGoogle Scholar
  64. Kitaura J, Song J, Tsai M, Asai K, Maeda-Yamamoto M, Mocsai A, Kawakami Y, Liu FT, Lowell CA, Barisas BG, Galli SJ, Kawakami T (2003) Evidence that IgE molecules mediate a spectrum of effects on mast cell survival and activation via aggregation of the FcεRI. Proc Natl Acad Sci USA 100(22):12911–12916Google Scholar
  65. Komiya A, Nagase H, Okugawa S, Ota Y, Suzukawa M, Kawakami A, Sekiya T, Matsushima K, Ohta K, Hirai K, Yamamoto K, Yamaguchi M (2006) Expression and function of toll-like receptors in human basophils. Int Arch Allergy Immunol 140(Suppl 1):23–27PubMedGoogle Scholar
  66. Kuo CH, Morohoshi K, Aye CC, Garoon RB, Collins A, Ono SJ (2012) The role of TRB3 in mast cells sensitized with monomeric IgE. Exp Mol Pathol 93(3):408–415PubMedGoogle Scholar
  67. Laffargue M, Calvez R, Finan P, Trifilieff A, Barbier M, Altruda F, Hirsch E, Wymann MP (2002) Phosphoinositide 3-kinase gamma is an essential amplifier of mast cell function. Immunity 16(3):441–451PubMedGoogle Scholar
  68. Lee JH, Kim JW, Kim do K, Kim HS, Park HJ, Park DK, Kim AR, Kim B, Beaven MA, Park KL, Kim YM, Choi WS (2011) The Src family kinase Fgr is critical for activation of mast cells and IgE-mediated anaphylaxis in mice. J Immunol 187(4):1807–1815Google Scholar
  69. Liao BC, Hou RC, Wang JS, Jeng KC (2006) Enhancement of the release of inflammatory mediators by substance P in rat basophilic leukemia RBL-2H3 cells. J Biomed Sci 13(5):613–619PubMedGoogle Scholar
  70. Lienard H, Bruhns P, Malbec O, Fridman WH, Daeron M (1999) Signal regulatory proteins negatively regulate immunoreceptor-dependent cell activation. J Biol Chem 274(45):32493–32499PubMedGoogle Scholar
  71. Lin S, Cicala C, Scharenberg AM, Kinet JP (1996) The FcεRIβ subunit functions as an amplifier of FceRIg-mediated cell activation signals. Cell 85(7):985–995PubMedGoogle Scholar
  72. Liu Y, Furuta K, Teshima R, Shirata N, Sugimoto Y, Ichikawa A, Tanaka S (2005) Critical role of protein kinase C betaII in activation of mast cells by monomeric IgE. J Biol Chem 280(47):38976–38981PubMedGoogle Scholar
  73. Madrenas J, Wange RL, Wang JL, Isakov N, Samelson LE, Germain RN (1995) Zeta phosphorylation without ZAP-70 activation induced by TCR antagonists or partial agonists. Science 267(5197):515–518PubMedGoogle Scholar
  74. Marquardt DL, Parker CW, Sullivan TJ (1978) Potentiation of mast cell mediator release by adenosine. J Immunol 120(3):871–878PubMedGoogle Scholar
  75. Matsuda K, Piliponsky AM, Iikura M, Nakae S, Wang EW, Dutta SM, Kawakami T, Tsai M, Galli SJ (2005) Monomeric IgE enhances human mast cell chemokine production: IL-4 augments and dexamethasone suppresses the response. J Allergy Clin Immunol 116(6):1357–1363PubMedGoogle Scholar
  76. Matsushima H, Yamada N, Matsue H, Shimada S (2004) TLR3-, TLR7-, and TLR9-mediated production of proinflammatory cytokines and chemokines from murine connective tissue type skin-derived mast cells but not from bone marrow-derived mast cells. J Immunol 173(1):531–541PubMedGoogle Scholar
  77. McCary C, Tancowny BP, Catalli A, Grammer LC, Harris KE, Schleimer RP, Kulka M (2010) Substance P downregulates expression of the high affinity IgE receptor (FcεRI) by human mast cells. J Neuroimmunol 220(1–2):17–24PubMedCentralPubMedGoogle Scholar
  78. McKeithan TW (1995) Kinetic proofreading in T-cell receptor signal transduction. Proc Natl Acad Sci USA 92(11):5042–5046Google Scholar
  79. Melendez AJ, Harnett MM, Pushparaj PN, Wong WS, Tay HK, McSharry CP, Harnett W (2007) Inhibition of Fc ε RI-mediated mast cell responses by ES-62, a product of parasitic filarial nematodes. Nat Med 13(11):1375–1381PubMedGoogle Scholar
  80. Metzger H (1977) The cellular receptor for IgE. In: Cuatrecasas P, Greaves MF (eds) Receptors and recognition. Chapman and Hall, London, pp 75–102Google Scholar
  81. Metzger H (1978) The IgE-mast cell system as a paradigm for the study of antibody mechanisms. Immunol Rev 41:186–199PubMedGoogle Scholar
  82. Metzger H (1983) The receptor on mast cells and related cells with high affinity for IgE. Contemp Top Mol Immunol 9:115–145PubMedGoogle Scholar
  83. Metzger H (1992) Transmembrane signaling: the joy of aggregation. J Immunol 149(5):1477–1487PubMedGoogle Scholar
  84. Meyaard L (2008) The inhibitory collagen receptor LAIR-1 (CD305). J Leukoc Biol 83(4):799–803PubMedGoogle Scholar
  85. Miyazaki D, Nakamura T, Toda M, Cheung-Chau KW, Richardson RM, Ono SJ (2005) Macrophage inflammatory protein-1α as a costimulatory signal for mast cell-mediated immediate hypersensitivity reactions. J Clin Invest 115(2):434–442PubMedCentralPubMedGoogle Scholar
  86. Nadler MJ, Kinet JP (2002) Uncovering new complexities in mast cell signaling. Nat Immunol 3(8):707–708PubMedGoogle Scholar
  87. Nakae S, Iikura M, Suto H, Akiba H, Umetsu DT, Dekruyff RH, Saito H, Galli SJ (2007) TIM-1 and TIM-3 enhancement of Th2 cytokine production by mast cells. Blood 110(7):2565–2568PubMedCentralPubMedGoogle Scholar
  88. Nguyen M, Solle M, Audoly LP, Tilley SL, Stock JL, McNeish JD, Coffman TM, Dombrowicz D, Koller BH (2002) Receptors and signaling mechanisms required for prostaglandin E2-mediated regulation of mast cell degranulation and IL-6 production. J Immunol 169(8):4586–4593PubMedGoogle Scholar
  89. Nishimoto H, Lee SW, Hong H, Potter KG, Maeda-Yamamoto M, Kinoshita T, Kawakami Y, Mittler RS, Kwon BS, Ware CF, Croft M, Kawakami T (2005) Costimulation of mast cells by 4-1BB, a member of the tumor necrosis factor receptor superfamily, with the high-affinity IgE receptor. Blood 106(13):4241–4248PubMedCentralPubMedGoogle Scholar
  90. Novak N, Bieber T, Peng WM (2010) The immunoglobulin E-Toll-like receptor network. Int Arch Allergy Immunol 151(1):1–7PubMedGoogle Scholar
  91. Ochi H, De Jesus NH, Hsieh FH, Austen KF, Boyce JA (2000) IL-4 and-5 prime human mast cells for different profiles of IgE-dependent cytokine production. Proc Natl Acad Sci USA 97(19):10509–10513Google Scholar
  92. Okumura S, Kashiwakura J, Tomita H, Matsumoto K, Nakajima T, Saito H, Okayama Y (2003) Identification of specific gene expression profiles in human mast cells mediated by Toll-like receptor 4 and FcεRI. Blood 102(7):2547–2554PubMedGoogle Scholar
  93. Olivera A (2008) Unraveling the complexities of sphingosine-1-phosphate function: the mast cell model. Prostaglandins Other Lipid Mediat 86(1–4):1–11PubMedCentralPubMedGoogle Scholar
  94. Olivera A, Mizugishi K, Tikhonova A, Ciaccia L, Odom S, Proia RL, Rivera J (2007) The sphingosine kinase-sphingosine-1-phosphate axis is a determinant of mast cell function and anaphylaxis. Immunity 26(3):287–297PubMedGoogle Scholar
  95. Olivera A, Rivera J (2011) An emerging role for the lipid mediator sphingosine-1-phosphate in mast cell effector function and allergic disease. Adv Exp Med Biol 716:123–142PubMedCentralPubMedGoogle Scholar
  96. On M, Billingsley JM, Jouvin MH, Kinet JP (2004) Molecular dissection of the FcRβ signaling amplifier. J Biol Chem 279(44):45782–45790PubMedGoogle Scholar
  97. Ortega Soto E, Pecht I (1988) A monoclonal antibody that inhibits secretion from rat basophilic leukemia cells and binds to a novel membrane component. J Immunol 141(12):4324–4332PubMedGoogle Scholar
  98. Oskeritzian CA, Price MM, Hait NC, Kapitonov D, Falanga YT, Morales JK, Ryan JJ, Milstien S, Spiegel S (2010) Essential roles of sphingosine-1-phosphate receptor 2 in human mast cell activation, anaphylaxis, and pulmonary edema. J Exp Med 207(3):465–474PubMedCentralPubMedGoogle Scholar
  99. Paar JM, Harris NT, Holowka D, Baird B (2002) Bivalent ligands with rigid double-stranded DNA spacers reveal structural constraints on signaling by Fc ε RI. J Immunol 169(2):856–864PubMedGoogle Scholar
  100. Paolini R, Serra A, Kinet JP (1996) Persistence of tyrosine-phosphorylated FcεRI in deactivated cells. J Biol Chem 271(27):15987–15992PubMedGoogle Scholar
  101. Parravicini V, Gadina M, Kovarova M, Odom S, Gonzalez-Espinosa C, Furumoto Y, Saitoh S, Samelson LE, O’Shea JJ, Rivera J (2002) Fyn kinase initiates complementary signals required for IgE-dependent mast cell degranulation. Nat Immunol 3(8):741–748PubMedGoogle Scholar
  102. Pasquier B, Launay P, Kanamaru Y, Moura IC, Pfirsch S, Ruffie C, Henin D, Benhamou M, Pretolani M, Blank U, Monteiro RC (2005) Identification of FcαRI as an inhibitory receptor that controls inflammation: dual role of FcRγ ITAM. Immunity 22(1):31–42PubMedGoogle Scholar
  103. Pietrzak A, Wierzbicki M, Wiktorska M, Brzezinska-Blaszczyk E (2011) Surface TLR2 and TLR4 expression on mature rat mast cells can be affected by some bacterial components and proinflammatory cytokines. Mediators Inflamm 2011:427473PubMedCentralPubMedGoogle Scholar
  104. Pribluda VS, Pribluda C, Metzger H (1994) Transphosphorylation as the mechanism by which the high-affinity receptor for IgE is phosphorylated upon aggregation. Proc Natl Acad Sci USA 91(23):11246–11550Google Scholar
  105. Price KS, Friend DS, Mellor EA, De Jesus N, Watts GF, Boyce JA (2002) CC chemokine receptor 3 mobilizes to the surface of human mast cells and potentiates immunoglobulin E-dependent generation of interleukin 13. Am J Respir Cell Mol Biol 28(4):420–427Google Scholar
  106. Price LS, Norman JC, Ridley AJ, Koffer A (1995) The small GTPases Rac and Rho as regulators of secretion in mast cells. Curr Biol 5(1):68–73PubMedGoogle Scholar
  107. Pyenta PS, Schwille P, Webb WW, Holowka D, Baird B (2003) Lateral diffusion of membrane lipid-anchored probes before and after aggregation of cell surface IgE-receptors. J Phys Chem A 107:8310–8318Google Scholar
  108. Qiao H, Andrade MV, Lisboa FA, Morgan K, Beaven MA (2006) FcεR1 and toll-like receptors mediate synergistic signals to markedly augment production of inflammatory cytokines in murine mast cells. Blood 107(2):610–618PubMedCentralPubMedGoogle Scholar
  109. Ramkumar V, Stiles GL, Beaven MA, Ali H (1993) The A3 adenosine receptor is the unique adenosine receptor which facilitates release of allergic mediators in mast cells. J Biol Chem 268(23):16887–16890PubMedGoogle Scholar
  110. Rivera J, Fierro NA, Olivera A, Suzuki R (2008) New insights on mast cell activation via the high affinity receptor for IgE. Adv Immunol 98:85–120PubMedCentralPubMedGoogle Scholar
  111. Ryzhov S, Goldstein AE, Biaggioni I, Feoktistov I (2006) Cross-talk between G(s)- and G(q)-coupled pathways in regulation of interleukin-4 by A(2B) adenosine receptors in human mast cells. Mol Pharmacol 70(2):727–735PubMedGoogle Scholar
  112. Saitoh S, Arudchandran R, Manetz TS, Zhang W, Sommers CL, Love PE, Rivera J, Samelson LE (2000) LAT is essential for FcεRI-mediated mast cell activation. Immunity 12(5):525–535PubMedGoogle Scholar
  113. Schulman ES, Glaum MC, Post T, Wang Y, Raible DG, Mohanty J, Butterfield JH, Pelleg A (1999) ATP modulates anti-IgE-induced release of histamine from human lung mast cells. Am J Respir Cell Mol Biol 20(3):530–537PubMedGoogle Scholar
  114. Selander C, Engblom C, Nilsson G, Scheynius A, Andersson CL (2009) TLR2/MyD88-dependent and -independent activation of mast cell IgE responses by the skin commensal yeast Malassezia sympodialis. J Immunol 182(7):4208–4216PubMedGoogle Scholar
  115. Serra-Pages M, Olivera A, Torres R, Picado C, de Mora F, Rivera J (2012) E-prostanoid 2 receptors dampen mast cell degranulation via cAMP/PKA-mediated suppression of IgE-dependent signaling. J Leukoc Biol 92(6):1155–1165PubMedCentralPubMedGoogle Scholar
  116. Sibilano R, Frossi B, Suzuki R, D’Inca F, Gri G, Piconese S, Colombo MP, Rivera J, Pucillo CE (2012) Modulation of FcεRI-dependent mast cell response by OX40L via Fyn, PI3 K, and RhoA. J Allergy Clin Immunol 130(3):751–760e2Google Scholar
  117. Sil D, Lee JB, Luo D, Holowka D, Baird B (2007) Trivalent ligands with rigid DNA spacers reveal structural requirements for IgE receptor signaling in RBL mast cells. ACS Chem Biol 2(10):674–684PubMedCentralPubMedGoogle Scholar
  118. Sloan-Lancaster J, Shaw AS, Rothbard JB, Allen PM (1994) Partial T cell signaling: altered phospho-zeta and lack of zap70 recruitment in APL-induced T cell anergy. Cell 79(5):913–922PubMedGoogle Scholar
  119. Sonnenblick A, Levy C, Razin E (2005) Immunological trigger of mast cells by monomeric IgE: effect on microphthalmia transcription factor, STAT3 network of interactions. J Immunol 175(3):1450–1455PubMedGoogle Scholar
  120. Suzuki R, Leach S, Dema B, Rivera J (2013) Characterization of a phospho-specific antibody to the Fcε receptor γ chain, reveals differences in the regulation of Syk and Akt phosphorylation. Antibodies 2:321–337Google Scholar
  121. Suzuki R, Leach S, Liu W, Ralston E, Scheffel J, Zhang W, Lowell CA, Rivera J (2014) Molecular editing of cellular responses by the high-affinity receptor for IgE. Science 343(6174):1021–1025PubMedGoogle Scholar
  122. Tashiro M, Kawakami Y, Abe R, Han W, Hata D, Sugie K, Yao L, Kawakami T (1997) Increased secretion of TNF-alpha by costimulation of mast cells via CD28 and Fc ε RI. J Immunol 158(5):2382–2389PubMedGoogle Scholar
  123. Thomas JL, Holowka D, Baird B, Webb WW (1994) Large-scale co-aggregation of fluorescent lipid probes with cell surface proteins. J Cell Biol 125(4):795–802PubMedGoogle Scholar
  124. Tkaczyk C, Horejsi V, Iwaki S, Draber P, Samelson LE, Satterthwaite AB, Nahm DH, Metcalfe DD, Gilfillan AM (2004) NTAL phosphorylation is a pivotal link between the signaling cascades leading to human mast cell degranulation following Kit activation and Fc ε RI aggregation. Blood 104(1):207–214PubMedGoogle Scholar
  125. Toda M, Dawson M, Nakamura T, Munro PM, Richardson RM, Bailly M, Ono SJ (2004) Impact of engagement of FcεRI and CC chemokine receptor 1 on mast cell activation and motility. J Biol Chem 279(46):48443–48448PubMedGoogle Scholar
  126. Tolar P, Hanna J, Krueger PD, Pierce SK (2009) The constant region of the membrane immunoglobulin mediates B cell-receptor clustering and signaling in response to membrane antigens. Immunity 30(1):44–55PubMedCentralPubMedGoogle Scholar
  127. Torigoe C, Inman JK, Metzger H (1998) An unusual mechanism for ligand antagonism. Science 281(5376):568–572PubMedGoogle Scholar
  128. Toru H, Pawankar R, Ra C, Yata J, Nakahata T (1998) Human mast cells produce IL-13 by high-affinity IgE receptor cross-linking: enhanced IL-13 production by IL-4-primed human mast cells. J Allergy Clin Immunol 102(3):491–502PubMedGoogle Scholar
  129. Uehara T, Blery M, Kang DW, Chen CC, Ho LH, Gartland GL, Liu FT, Vivier E, Cooper MD, Kubagawa H (2001) Inhibition of IgE-mediated mast cell activation by the paired Ig-like receptor PIR-B. J Clin Invest 108(7):1041–1050PubMedCentralPubMedGoogle Scholar
  130. van der Merwe PA, Davis SJ (2003) Molecular interactions mediating T cell antigen recognition. Annu Rev Immunol 21:659–684PubMedGoogle Scholar
  131. Varadaradjalou S, Feger F, Thieblemont N, Hamouda NB, Pleau JM, Dy M, Arock M (2003) Toll-like receptor 2 (TLR2) and TLR4 differentially activate human mast cells. Eur J Immunol 33(4):899–906PubMedGoogle Scholar
  132. Vonakis BM, Chen H, Haleem-Smith H, Metzger H (1997) The unique domain as the site on Lyn kinase for its constitutive association with the high affinity receptor for IgE. J Biol Chem 272(38):24072–24080PubMedGoogle Scholar
  133. Wang XS, Lau HY (2006) Prostaglandin E potentiates the immunologically stimulated histamine release from human peripheral blood-derived mast cells through EP1/EP3 receptors. Allergy 61(4):503–506PubMedGoogle Scholar
  134. Weetall M, Holowka D, Baird B (1993) Heterologous desensitization of the high affinity receptor for IgE (FcεRI) on RBL cells. J Immunol 150(9):4072–4083PubMedGoogle Scholar
  135. Wong MX, Roberts D, Bartley PA, Jackson DE (2002) Absence of platelet endothelial cell adhesion molecule-1 (CD31) leads to increased severity of local and systemic IgE-mediated anaphylaxis and modulation of mast cell activation. J Immunol 168(12):6455–6462PubMedGoogle Scholar
  136. Woolhiser MR, Brockow K, Metcalfe DD (2004) Activation of human mast cells by aggregated IgG through FcγRI: additive effects of C3a. Clin Immunol 110(2):172–180PubMedGoogle Scholar
  137. Woolhiser MR, Okayama Y, Gilfillan AM, Metcalfe DD (2001) IgG-dependent activation of human mast cells following up-regulation of FcγRI by IFN-γ. Eur J Immunol 31(11):3298–3307PubMedGoogle Scholar
  138. Yamaguchi M, Lantz CS, Oettgen HC, Katona IM, Fleming T, Miyajima I, Kinet JP, Galli SJ (1997) IgE enhances mouse mast cell FcεRI expression in vitro and in vivo: evidence for a novel amplification mechanism in IgE-dependent reactions. J Exp Med 185(4):663–672PubMedCentralPubMedGoogle Scholar
  139. Yamasaki S, Ishikawa E, Kohno M, Saito T (2004) The quantity and duration of FcRgamma signals determine mast cell degranulation and survival. Blood 103(8):3093–3101PubMedGoogle Scholar
  140. Yamashita T, Suzuki R, Backlund PS, Yamashita Y, Yergey AL, Rivera J (2008) Differential dephosphorylation of the FcRγ immunoreceptor tyrosine-based activation motif tyrosines with dissimilar potential for activating Syk. J Biol Chem 283(42):28584–28594PubMedCentralPubMedGoogle Scholar
  141. Yang Z, Yan WX, Cai H, Tedla N, Armishaw C, Di Girolamo N, Wang HW, Hampartzoumian T, Simpson JL, Gibson PG, Hunt J, Hart P, Hughes JM, Perry MA, Alewood PF, Geczy CL (2007) S100A12 provokes mast cell activation: a potential amplification pathway in asthma and innate immunity. J Allergy Clin Immunol 119(1):106–114PubMedGoogle Scholar
  142. Yokoi H, Choi OH, Hubbard W, Lee HS, Canning BJ, Lee HH, Ryu SD, von Gunten S, Bickel CA, Hudson SA, Macglashan DW, Jr, Bochner BS (2008) Inhibition of FcεRI-dependent mediator release and calcium flux from human mast cells by sialic acid-binding immunoglobulin-like lectin 8 engagement. J Allergy Clin Immunol 121(2):499–505e1Google Scholar
  143. Yoshioka M, Fukuishi N, Iriguchi S, Ohsaki K, Yamanobe H, Inukai A, Kurihara D, Imajo N, Yasui Y, Matsui N, Tsujita T, Ishii A, Seya T, Takahama M, Akagi M (2007) Lipoteichoic acid downregulates FcεRI expression on human mast cells through Toll-like receptor 2. J Allergy Clin Immunol 120(2):452–461PubMedGoogle Scholar
  144. Yotsumoto K, Okoshi Y, Shibuya K, Yamazaki S, Tahara-Hanaoka S, Honda S, Osawa M, Kuroiwa A, Matsuda Y, Tenen DG, Iwama A, Nakauchi H, Shibuya A (2003) Paired activating and inhibitory immunoglobulin-like receptors, MAIR-I and MAIR-II, regulate mast cell and macrophage activation. J Exp Med 198(2):223–233PubMedCentralPubMedGoogle Scholar
  145. Young RM, Holowka D, Baird B (2003) A lipid raft environment enhances Lyn kinase activity by protecting the active site tyrosine from dephosphorylation. J Biol Chem 278(23):20746–20752PubMedGoogle Scholar
  146. Young RM, Zheng X, Holowka D, Baird B (2005) Reconstitution of regulated phosphorylation of FcεRI by a lipid raft-excluded protein-tyrosine phosphatase. J Biol Chem 280(2):1230–1235PubMedGoogle Scholar
  147. Zhang S, Cherwinski H, Sedgwick JD, Phillips JH (2004) Molecular mechanisms of CD200 inhibition of mast cell activation. J Immunol 173(11):6786–6793PubMedGoogle Scholar
  148. Zorn CN, Keck S, Hendriks RW, Leitges M, Freudenberg MA, Huber M (2009) Bruton’s tyrosine kinase is dispensable for the toll-like receptor-mediated activation of mast cells. Cell Signal 21(1):79–86PubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Molecular Immunology Section, Laboratory of Molecular ImmunogeneticsNational Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of HealthBethesdaUSA
  2. 2.NIAMS-NIHBethesdaUSA

Personalised recommendations