Skip to main content

The Phenomenon of Superconductivity

  • Chapter
  • First Online:
  • 4047 Accesses

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 214))

Abstract

A superconductor is not only a perfect conductor (ρ = 0) but also a perfect diamagnet (B = 0) below T c. Meissner and Ochsenfeld discovered in 1933 that the magnetic field is expelled out of the body of the superconductor. Field penetrates the material only a small distance, called London’s penetration depth, λ which is of the order of 30–60 nm in metal superconductors. The transition to superconducting phase has been found to be of the second order as confirmed by the absence of a latent heat and by the appearance of a peak in the specific heat at T c. These materials also exhibit flux quantization in so far as the field entering a superconducting ring or a cylinder has to be an integral multiple of a flux quantum Φ0 = h/2π (= 2 × 10–15 T m2). The strong evidence of the role of phonons in the occurrence of superconductivity came from the isotope effect which shows that T c is inversely proportional to the square root of the atomic mass. Pippard introduced the concept of long range coherence among the super electrons and defined a characteristic length, the coherence length ξ over which the order parameter changes in a superconductor. This parameter is of the order of 1,000 nm much larger than the parameter λ for these metal superconductors. Optical experiments strongly hinted at the existence of an energy gap in the energy spectrum of these materials. All these experimental facts led the three physicists, Bardeen, Cooper and Schrieffer, to formulate the first successful microscopic theory, the BCS theory of superconductivity. The chapter ends with a short discussion on dc and ac Josephson effect. The design of SQUID, an ultra low magnetic field/voltage measuring device, based upon the Josephson junction behavior, has also been discussed. A large number of SQUIDs are mounted on a helmet shaped cryostat and used for mapping feeble magnetic field inside the brain. This technique is called “magneto-encephalography”.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. H.K. Kamerlingh Onnes, Commun. Phys. Lab. Univ. Leiden, 29, (1911)

    Google Scholar 

  2. W. Buckel, R. Kleiner, Superconductivity Fundamental and Applications (Wiley_VCH Verlag GmbH & Co KGaA, Weinheim, 2004)

    Google Scholar 

  3. F.B. Silsbee, J. Wash. Acad. Sci. 6, 597 (1916)

    Google Scholar 

  4. W. Meissner, R. Ochsenfeld, Naturewissenschaften 21, 787 (1933)

    Article  ADS  Google Scholar 

  5. C.J. Gorter, H.B.G. Casimir, Phys. Z. 35, 963 (1934)

    Google Scholar 

  6. W.H. Keesom, J.v.d. Ende, Comm. Leiden, 219b

    Google Scholar 

  7. W.H. Keesom, J.A. Kok, Comm. Leiden, 221e Physica 1, 175 (1934)

    Google Scholar 

  8. D.H. Douglass Jr, L.M. Felicov, Prog. Low Temp. Phys. 4, 97 (1964)

    Google Scholar 

  9. P.L. Richards, M. Tinkham, Phys. Rev. 119, 575 (1960)

    Article  ADS  Google Scholar 

  10. E. Maxwell, Phys. Rev. 78, 477 (1950)

    Article  ADS  Google Scholar 

  11. C.A. Reynold, B. Serin, W.H. Wright, L.B. Nesbitt, Phys. Rev. 84, 691 (1951)

    Google Scholar 

  12. F. London, Superfluids, vol. 1 (Willey, New York, 1950)

    Google Scholar 

  13. B.S. Deaver Jr, W.M. Fairbank, Phys. Rev. Lett. 7, 43 (1961)

    Article  ADS  Google Scholar 

  14. R. Doll, M. Nabauer, Phys. Rev. Lett. 7, 51 (1961)

    Article  ADS  Google Scholar 

  15. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108, 1175 (1957)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. A.B. Pippard, Physica 19, 765 (1953)

    Article  ADS  Google Scholar 

  17. A.C. Rose-Innes, E.H. Rhoderidz, Introduction to Superconductivity. Copyright © 1969, Pergamon Press, Library of Congress Catalog Card No. 79-78591

    Google Scholar 

  18. I. Giaever, Phys. Rev. Lett. 5, 464 (1960)

    Article  ADS  Google Scholar 

  19. I. Gaiever, K. Megerle, Phys. Rev. 122, 1101 (1961)

    Article  ADS  Google Scholar 

  20. B.D. Josephson, Phys. Lett. 1, 251 (1962)

    Article  ADS  MATH  Google Scholar 

  21. P.W. Anderson, J.M. Rowell, Phys. Rev. Lett. 10, 230 (1963)

    Article  ADS  Google Scholar 

  22. J. Clarke, Phys. Today 24, 30 (1971)

    Google Scholar 

  23. J. Clarke, Sci. Am. 271, 46 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. G. Sharma .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sharma, R.G. (2015). The Phenomenon of Superconductivity. In: Superconductivity. Springer Series in Materials Science, vol 214. Springer, Cham. https://doi.org/10.1007/978-3-319-13713-1_2

Download citation

Publish with us

Policies and ethics