Skip to main content

Other Applications of Superconducting Magnets

  • Chapter
  • First Online:
Superconductivity

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 214))

  • 3642 Accesses

Abstract

One area in which superconductivity has directly benefited the society is the health care. Magnetic Resonance Imaging (MRI), built around a superconducting magnet is widely used world over for diagnostic purposes like imaging soft tissues of human body. MRI is based on the principle of Nuclear Magnetic Resonance (NMR). High resolution NMR spectrometers used for studying structure of most complex molecules require high magnetic field, high homogeneity and high temporal stability. Superconducting magnets are run in persistent mode with power supply disconnected and produce field with unprecedented stability. Compensating and shim coils provide high homogeneity. 1 GHz (23.5 T) NMR spectrometers are commercially available with Nb–Ti/Nb3Sn magnets operating at 1.5–1.8 K. Another potential application, though not very popular, is Superconducting High Gradient Magnetic Separator (SHGMS) used to reduce magnetic impurities to ppm level in a variety of minerals. Superconducting Magnet Energy Storage (SMES) is an ideal device to store large amount of energy and releasing it to the grid for load leveling and to balance short duration transient faults. It is used as an attractive pulse power source in strategic applications. Superconducting magnet in persistence mode stores an energy equal to ½LI 2. Large SMES with stored energy in TJ range for power network system and medium energy 400 MW (70 GJ) SMES for FEL guided weapons were designed but not built. Micro 5 and 10 MVA SMES have been built and put in use in Japan. All the SMES are designed and built with Nb–Ti superconductors. Attention is now focused on the design of magnets for all the applications based upon 2G REBCO coated conductor which promises high critical current at elevated temperature, 30–50 K. All these HTS devices will be conduction cooled using cryocoolers and will become commercially competitive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Roth, Ultra High Field NMR Magnet Design. http://www2.warwick.ac.uk/fac/sci/physics/current/teach/module_home/px388/extra_material/bruker_magnets.pdf

  2. T. Kiyoshi, S. Matsumoto, A. Satoet et al., IEEE Trans. Appl. Supercond. 15, 1330 (2005)

    Article  Google Scholar 

  3. Bruker BioSpin, Overview, 23.5 T Standard-Bore, Persistent Superconducting Magnet, The World’s First 1 gigahertz NMR. http://www.bruker.com/products/mr/nmr/dnp-nmr/overview.html

  4. S.T. Wang, R. Wahrer, F. Anet et al., IEEE Trans. Magn. 30, 1994 (1994)

    Article  Google Scholar 

  5. W.D. Markiewicz, J.R. Miller, J. Schwartz et al., IEEE Trans. Appl. Supercond. 16, 1523 (2006)

    Article  Google Scholar 

  6. R.G. Sharma, Y.S. Reddy, B. Sarkar, R. Rajput, Design and Winding of the Magnet Coils and Fabrication of Dewar for a 100 MHz NMR System (NPL, India, 1994) (unpublished)

    Google Scholar 

  7. R.G. Sharma, Y.S. Reddy, R.B. Saxena, M.A. Ansari, A High Homogeneity Superconducting Magnet and a Long Hold Cryostat for NMR Application, Technical Bulletin, NPL, New Delhi, October, pp. 1–17, (1996)

    Google Scholar 

  8. M.D. Sauzade, S.K. Kan, Adv. Electron. Electron Phys. 34, 1–93 (1973) (Chapter 1, Ed. L. Marton, Academic Press)

    Google Scholar 

  9. J.E.C. Williums, S. Pourrranimi, Y. Iwasa et al., IEEE Trans. Magn. 25, 1767 (1989)

    Article  ADS  Google Scholar 

  10. JEOL Resonance, JEOL Resonance Introduces New Zero Boil Off Magnet for NMR System, A Press Release dated April 17 (2013)

    Google Scholar 

  11. T. Suzuki, M. Okada, T. Wakuda et al., J. Phys.: Conf. Ser. 97, 012133 (2008) (8th European Conference on Applied Superconductivity EUCAS 2007)

    Google Scholar 

  12. K. Saitoh, H. Yamamoto, K. Kawasaki, et al., J. Phys.: Conf. Ser. 97, 012141 (2008) (8th European Conference on Applied Superconductivity, EUCAS-2007)

    Google Scholar 

  13. M. Tsuchiya, T. Wakuda, K. Maki et al., IEEE Trans. Appl. Supercond. 18, 840 (2008)

    Article  ADS  Google Scholar 

  14. P.C. Lauterbur, Nature (London) 242, 190 (1973)

    Article  ADS  Google Scholar 

  15. M.W. Garrett, J. Appl. Phys. 38, 2563 (1967)

    Article  ADS  Google Scholar 

  16. S. Pissanetzky, IEEE Trans. Magn. 28, 1961 (1992)

    Article  ADS  Google Scholar 

  17. R. Thompson, R.W. Brown, V.C. Srivastava, IEEE Trans. Magn. 30, 108 (1994)

    Article  ADS  Google Scholar 

  18. S. Crozier, D.M. Doddrell, J. Magn. Reson. 127, 233 (1997)

    Article  ADS  Google Scholar 

  19. H. Zhao, S. Crozier, D.M. Doddrell, Magn. Reson. Med. 45, 331 (2001)

    Article  Google Scholar 

  20. G. Sinha, R. Sundararaman, G. Singh, IEEE Trans. Magn. 44, 2351 (2008)

    Article  ADS  Google Scholar 

  21. Y. Lvovsky, E.W. Strautner, T. Zhang, Topical Review, Supercond. Sci. Technol. 26, 0933001(pp 71), (2013)

    Google Scholar 

  22. D.M. Doddrell, H. Zhao, Multi-layer magnet, US Patent 7212004 (2007)

    Google Scholar 

  23. S. Mine, M. Xu, S. Buresh et al., IEEE Trans. Appl. Supercond. 23, 4601404 (2013)

    Article  Google Scholar 

  24. H.H. Kolm, IEEE Trans. MAG-11, 1567 (1975)

    Google Scholar 

  25. Z.J.J. Steckly, IIIE Trans. MAG-11, 1594 (1975)

    Google Scholar 

  26. S. Nishijima, K. Takahata, K. Saito et al., IEEE Trans. MAG-23, 573 (1987)

    Google Scholar 

  27. H. Yamashita, K. Fujita, F. Nakajima et al., Sep. Sci. Technol. 16, 987 (1981)

    Article  Google Scholar 

  28. K. Takahata, S. Nishijima, T. Okada et al., IEEE Trans. MAG-24, 878 (1988)

    Google Scholar 

  29. R.G. Sharma, Y.S. Reddy, Development of a Superconducting High Gradient Magnetic Separator, Technical Bulletin, NPL, India, April 1992, pp. 1–8

    Google Scholar 

  30. Y. Kakihara, T. Fukunishi, S. Takeda et al., IEEE Trans. Appl. Supercond. 14, 1565 (2004)

    Article  Google Scholar 

  31. S. Nishijima, S. Takeda, IEEE Trans. Appl. Supercond. 17, 2311 (2007)

    Article  ADS  Google Scholar 

  32. F. Ning, M. Wang, H. Yang et al., IEEE Trans. Appl. Supercond. 22, 3700104 (2012)

    Article  Google Scholar 

  33. D.D. Jackson, P. Beharrel, J. Sloan, Industrial-Scale Purification of Kaolin Using a Conduction-Cooled Superconducting High-Gradient Magnetic Separator (Quantum Design Inc. USA). www.qdusa.com/sitedocs/productBrochures/SHGMS_poster_forEUCAS_2013pdf

  34. W. Hassenzhal, IEEE Trans. MAG-25, 750 (1989)

    Google Scholar 

  35. S. Nagaya, N. Hirano, T. Tanaka et al., IEEE Trans. Appl. Supercond. 14, 699 (2004)

    Article  Google Scholar 

  36. S. Nagaya, N. Hirano, T. Katagiri et al., Cryogenics 52, 708 (2012)

    Article  ADS  Google Scholar 

  37. R.J. Loyd, T.E. Walsh, E.R. Kimmy, IEEE Trans. MAG-27, 1712 (1991)

    Google Scholar 

  38. P. Tixador, Superconducting Magnetic Energy Storage: Status and Perspective, in IEEE/CSC & ESAS European Superconductivity News Forum, No. 3, Jan 2008, www.ewh.ieee.org/europe/newforum/pdf/CR5_final3_012008.pdf

  39. M. Ferrier, Stockage d’ energie dans un enroulement supraconducteur, Low temperature and Electric Pargamon Press, 425–432 (1970)

    Google Scholar 

  40. G.W. Ullrich, IEEE Trans. Appl. Supercond. 5, 416 (1995)

    Article  Google Scholar 

  41. J.L. Wu, J.F. Roach, D.C. Johnson et al., Adv. Cryog. Eng. 39, 813 (1994)

    Article  Google Scholar 

  42. C.J. Hawley, S.A. Gower, IEEE Trans. Appl. Supercond. 15, 1899 (2005)

    Article  Google Scholar 

  43. C.J. Hawley, D. Cuiuri, C.D. Cook et al., J. Phys.: Conf. Ser. 43, 809 (2006) http://ro.uow.edu.au/cgi/viewcontent.cgi?article=7297&context=engpapers

  44. S.S. Kalsi, D. Aized, B. Konnor et al., IEEE Trans. Appl. Supercond. 7, 971 (1991)

    Article  Google Scholar 

  45. G. Wojtasiewicz, T. janowski, S. Kozak et al., J. Phys.: Conf. Ser. 43, 821 (2006)

    Google Scholar 

  46. J.H. Kim, S.Y. Hahn, C. Hwan et al., IEEE Trans. Appl. Superconduc. 12, 774 (2002)

    Article  Google Scholar 

  47. P. Tixador, M. Deleglise, A. Badel et al., First tests of 800 kJ HTS SMES http://arxiv.org/ftp/arxiv/papers/0812/0812.3639.pdf

  48. W. Yuan, W. Xian, M. Ainslie et al., IEEE Trans. Appl. Supercond. 20, 1379 (2010)

    Article  ADS  Google Scholar 

  49. F. Trillaud, L.S. Cruz, IEEE Trans. Appl. Supercond. 24, 5700205 (2014)

    Google Scholar 

  50. B. Vincent, P. Tixador, T. Lecrevisse et al., IEEE Trans. Appl. Supercond. 23, 5700805 (2013)

    Article  Google Scholar 

  51. S.S. Kalsi, K. Weeber, H. Takesue et al., Proc. IEEE 92, 1688 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. G. Sharma .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sharma, R.G. (2015). Other Applications of Superconducting Magnets. In: Superconductivity. Springer Series in Materials Science, vol 214. Springer, Cham. https://doi.org/10.1007/978-3-319-13713-1_10

Download citation

Publish with us

Policies and ethics