Skip to main content

Feasibility of Single-Input Tracer Kinetic Modeling with Continuous-Time Formalism in Liver 4-Phase Dynamic Contrast-Enhanced CT

  • Conference paper
  • First Online:
Abdominal Imaging. Computational and Clinical Applications (ABD-MICCAI 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8676))

  • 766 Accesses

Abstract

The modeling of tracer kinetics with use of low-temporal-resolution data is of central importance for patient dose reduction in dynamic contrast-enhanced CT (DCE-CT) study. Tracer kinetic models of the liver vary according to the physiologic assumptions imposed on the model, and they can substantially differ in the ways how the input for blood supply and tissue compartments are modeled. In this study, single-input flow-limited (FL), Tofts-Kety (TK), extended TK (ETK), Hayton-Brady (HB), two compartment exchange (2CX), and adiabatic approximation to the tissue homogeneity (AATH) models were applied to the analysis of liver 4-phase DCE-CT data with fully continuous-time parameter formulation, including the bolus arrival time. The bolus arrival time for the 2CX and AATH models was described by modifying the vascular transport operator theory. Initial results indicate that single-input tracer kinetic modeling is feasible for distinguishing between hepatocellular carcinoma and normal liver parenchyma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brix, G., Griebel, J., Kiessling, F., Wenz, F.: Tracer kinetic modelling of tumour angiogenesis based on dynamic contrast-enhanced CT and MRI measurements. Eur. J. Nucl. Med. Mol. Imaging 37(Suppl 1), S30–S51 (2010)

    Article  Google Scholar 

  2. Sourbron, S.P., Buckley, D.L.: Tracer kinetic modelling in MRI: Estimating perfusion and capillary permeability. Phys. Med. Biol. 57, R1–R33 (2012)

    Article  Google Scholar 

  3. Schenk Jr., W.G., McDonald, J.C., McDonald, K., Drapanas, T.: Direct measurement of hepatic blood flow in surgical patients: with related observations on hepatic flow dynamics in experimental animals. Ann. Surg. 156, 463–471 (1962)

    Article  Google Scholar 

  4. Koh, T.S., Thng, C.H., Lee, P.S., Hartono, S., Rumpel, H., Goh, B.C., Bisdas, S.: Hepatic metastases: In vivo assessment of perfusion parameters at dynamic contrast-enhanced MR imaging with dual-input two-compartment tracer kinetics model. Radiology 249, 307–320 (2008)

    Article  Google Scholar 

  5. Koh, T.S., Thng, C.H., Hartono, S., Kwek, J.W., Khoo, J.B., Miyazaki, K., Collins, D.J., Orton, M.R., Leach, M.O., Lewington, V., Koh, D.M.: Dynamic contrast-enhanced MRI of neuroendocrine hepatic metastases: A feasibility study using a dual-input two-compartment model. Magn. Reson. Med. 65, 250–260 (2011)

    Article  Google Scholar 

  6. Materne, R., Smith, A.M., Peeters, F., Dehoux, J.P., Keyeux, A., Horsmans, Y., Van Beers, B.E.: Assessment of hepatic perfusion parameters with dynamic MRI. Magn. Reson. Med. 47, 135–142 (2002)

    Article  Google Scholar 

  7. Calamante, F., Willats, L., Gadian, D.G., Connelly, A.: Bolus delay and dispersion in perfusion MRI: Implications for tissue predictor models in stroke. Magn. Reson. Med. 55, 1180–1185 (2006)

    Article  Google Scholar 

  8. Matsui, O.: Detection and characterization of hepatocellular carcinoma by imaging. Clin. Gastroenterol. Hepatol. 3, S136–S140 (2005)

    Article  Google Scholar 

  9. Miles, K.A.: Functional computed tomography in oncology. Eur. J. Cancer 38, 2079–2084 (2002)

    Article  Google Scholar 

  10. Tofts, P.S., Brix, G., Buckley, D.L., Evelhoch, J.L., Henderson, E., Knopp, M.V., Larsson, H.B., Lee, T.Y., Mayr, N.A., Parker, G.J., Port, R.E., Taylor, J., Weisskoff, R.M.: Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: Standardized quantities and symbols. J. Magn. Reson. Imag. 10, 223–232 (1999)

    Article  Google Scholar 

  11. Sourbron, S.P., Buckley, D.L.: On the scope and interpretation of the Tofts models for DCE-MRI. Magn. Reson. Med. 66, 735–745 (2011)

    Article  Google Scholar 

  12. Hayton, P., Brady, M., Tarassenko, L., Moore, N.: Analysis of dynamic MR breast images using a model of contrast enhancement. Med. Image Anal. 1, 207–224 (1997)

    Article  Google Scholar 

  13. Brix, G., Bahner, M.L., Hoffmann, U., Horvath, A., Schreiber, W.: Regional blood flow, capillary permeability, and compartmental volumes: Measurement with dynamic CT–initial experience. Radiology 210, 269–276 (1999)

    Article  Google Scholar 

  14. St. Lawrence, K.S., Lee, T.Y.: An adiabatic approximation to the tissue homogeneity model for water exchange in the brain: I. Theoretical derivation. J. Cereb. Blood Flow Metab. 18, 1365–1377 (1998)

    Article  Google Scholar 

  15. Orton, M.R., d’Arcy, J.A., Walker-Samuel, S., Hawkes, D.J., Atkinson, D., Collins, D.J., Leach, M.O.: Computationally efficient vascular input function models for quantitative kinetic modelling using DCE-MRI. Phys. Med. Biol. 53, 1225–1239 (2008)

    Article  Google Scholar 

  16. Lee, S.H., Ryu, Y., Hayano, K., Yoshida, H.: Continuous-time flow-limited modeling by convolution area property and differentiation product rule in 4-Phase liver dynamic contrast-enhanced CT. In: Yoshida, H., Warfield, S., Vannier, M.W. (eds.) Abdominal Imaging 2013. LNCS, vol. 8198, pp. 259–269. Springer, Heidelberg (2013)

    Google Scholar 

  17. Moré, J.J., Garbow, B.S., Hillstrom, K.E.: User Guide for MINPACK-1 (1980)

    Google Scholar 

  18. Markwardt, C.B.: Non-linear least squares fitting in IDL with MPFIT. In: Proceedings of Astronomical Data Analysis Software and Systems XVIII, Quebec, Canada, ASP Conference Series, vol. 411, p. 251 (2009)

    Google Scholar 

  19. King, R.B., Deussen, A., Raymond, G.M., Bassingthwaighte, J.B.: A vascular transport operator. Am. J. Physiol. 265, H2196–H2208 (1993)

    Google Scholar 

  20. Zhu, F., Carpenter, T., Rodriguez Gonzalez, D., Atkinson, M., Wardlaw, J.: Computed tomography perfusion imaging denoising using gaussian process regression. Phys. Med. Biol. 57, N183–N198 (2012)

    Article  Google Scholar 

  21. Ibanez, L., Schroeder, W., Ng, L., Cates, J.: The ITK Software Guide. Kitware, Inc., Clifton Park (2005)

    Google Scholar 

Download references

Acknowledgments

This study was supported in part by grant CA187877 from the National Cancer Institute at the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Ho Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Lee, S.H., Ryu, Y., Hayano, K., Yoshida, H. (2014). Feasibility of Single-Input Tracer Kinetic Modeling with Continuous-Time Formalism in Liver 4-Phase Dynamic Contrast-Enhanced CT. In: Yoshida, H., Näppi, J., Saini, S. (eds) Abdominal Imaging. Computational and Clinical Applications. ABD-MICCAI 2014. Lecture Notes in Computer Science(), vol 8676. Springer, Cham. https://doi.org/10.1007/978-3-319-13692-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13692-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13691-2

  • Online ISBN: 978-3-319-13692-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics