Skip to main content

The Biology of MicroRNA

  • Chapter
  • First Online:
  • 1059 Accesses

Part of the book series: Progress in Inflammation Research ((PIR))

Abstract

MicroRNAs (miRNAs) are small non-coding RNA molecules involved in mRNA regulation at a post-transcriptional level. The first miRNA was discovered in 1993, and since then many branches of research have been explored to fully understand the miRNA world. Studies regarding the biogenesis process have highlighted different pathways according to miRNA gene localization, although the biochemical mechanism is not completely clear yet. In animals, miRNAs act mainly as negative regulators through translation inhibition, but recent evidence has shown their ability to stimulate mRNA degradation through recruiting decapping enzymes and nucleases. The “canonical” binding site of miRNAs is located within the 3′UTR of the mRNA target, but the coding sequence and the 5′UTR can also be bound by miRNAs. Although they mainly play a negative role at a post-transcriptional level, a few miRNAs have been reported to actually enhance mRNA expression. Altered patterns of miRNAs, due to genetic alterations, defects in the biogenesis process, epigenetic modification or aberrant expression of miRNA genes, are associated with many pathological contexts, including cancer and inflammatory diseases. Although the wider world of small RNAs has to be further explored, these regulators have already been shown to play a crucial role in all biological processes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Guthrie C (1991) Messenger RNA splicing in yeast: clues to why the spliceosome is a ribonucleoprotein. Science 253(5016):157–163

    Article  CAS  PubMed  Google Scholar 

  2. Stuart K (1991) RNA editing in mitochondrial mRNA of trypanosomatids. Trends Biochem Sci 16(2):68–72

    Article  PubMed  Google Scholar 

  3. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854

    Article  CAS  PubMed  Google Scholar 

  4. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (2000) 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403(6772):901–906

    Article  CAS  PubMed  Google Scholar 

  5. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294(5543):853–858

    Article  CAS  PubMed  Google Scholar 

  6. Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294(5543):858–862

    Article  CAS  PubMed  Google Scholar 

  7. Lee RC, Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294(5543):862–864

    Article  CAS  PubMed  Google Scholar 

  8. Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42(Database issue):D68–D73. doi:10.1093/nar/gkt1181

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Schoof CR, Botelho EL, Izzotti A, Vasques Ldos R (2012) MicroRNAs in cancer treatment and prognosis. Am J Cancer Res 2(4):414–433

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10(2):126–139. doi:10.1038/nrm2632

    Article  CAS  PubMed  Google Scholar 

  11. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM (2002) Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 99(24):15524–15529. doi:10.1073/pnas.242606799

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Oglesby IK, Bray IM, Chotirmall SH, Stallings RL, O’Neill SJ, McElvaney NG, Greene CM (2010) miR-126 is downregulated in cystic fibrosis airway epithelial cells and regulates TOM1 expression. J Immunol 184(4):1702–1709. doi:10.4049/jimmunol.0902669

    Article  CAS  PubMed  Google Scholar 

  13. Baltimore D, Boldin MP, O’Connell RM, Rao DS, Taganov KD (2008) MicroRNAs: new regulators of immune cell development and function. Nat Immunol 9(8):839–845. doi:10.1038/ni.f.209

    Article  CAS  PubMed  Google Scholar 

  14. Sundaram GM, Common JE, Gopal FE, Srikanta S, Lakshman K, Lunny DP, Lim TC, Tanavde V, Lane EB, Sampath P (2013) “See-saw” expression of microRNA-198 and FSTL1 from a single transcript in wound healing. Nature 495(7439):103–106. doi:10.1038/nature11890

    Article  CAS  PubMed  Google Scholar 

  15. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  16. Baskerville S, Bartel DP (2005) Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA 11(3):241–247. doi:10.1261/rna.7240905

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23(20):4051–4060. doi:10.1038/sj.emboj.7600385

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Deininger P (2011) Alu elements: know the SINEs. Genome Biol 12(12):236. doi:10.1186/gb-2011-12-12-236

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Borchert GM, Lanier W, Davidson BL (2006) RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 13(12):1097–1101

    Article  CAS  PubMed  Google Scholar 

  20. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Rådmark O, Kim S, Kim VN (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425(6956):415–419. doi:10.1038/nature01957

    Article  CAS  PubMed  Google Scholar 

  21. Han J, Lee Y, Yeom KH, Nam JW, Heo I, Rhee JK, Sohn SY, Cho Y, Zhang BT, Kim VN (2006) Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125(5):887–901. doi:10.1016/j.cell.2006.03.043

    Article  CAS  PubMed  Google Scholar 

  22. Lund E, Güttinger S, Calado A, Dahlberg JE, Kutay U (2004) Nuclear export of microRNA precursors. Science 303(5654):95–98. doi:10.1126/science.1090599

    Article  CAS  PubMed  Google Scholar 

  23. Zeng Y, Cullen BR (2004) Structural requirements for pre-microRNA binding and nuclear export by Exportin 5. Nucleic Acids Res 32(16):4776–4785. doi:10.1093/nar/gkh824

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409(6818):363–366. doi:10.1038/35053110

    Article  CAS  PubMed  Google Scholar 

  25. Ketting RF, Fischer SE, Bernstein E, Sijen T, Hannon GJ, Plasterk RH (2001) Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev 15(20):2654–2659. doi:10.1101/gad.927801

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K, Shiekhattar R (2005) TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436(7051):740–744. doi:10.1038/nature03868

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Lee Y, Hur I, Park SY, Kim YK, Suh MR, Kim VN (2006) The role of PACT in the RNA silencing pathway. EMBO J 25(3):522–532. doi:10.1038/sj.emboj.7600942

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Schwarz DS, Hutvágner G, Du T, Xu Z, Aronin N, Zamore PD (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115(2):199–208

    Article  CAS  PubMed  Google Scholar 

  29. Peters L, Meister G (2007) Argonaute proteins: mediators of RNA silencing. Mol Cell 26(5):611–623. doi:10.1016/j.molcel.2007.05.001

    Article  CAS  PubMed  Google Scholar 

  30. Kim YK, Kim VN (2007) Processing of intronic microRNAs. EMBO J 26(3):775–783. doi:10.1038/sj.emboj.7601512

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Lin SL, Miller JD, Ying SY (2006) Intronic microRNA (miRNA). J Biomed Biotechnol 2006(4):26818

    PubMed Central  PubMed  Google Scholar 

  32. Filipowicz W, Pogacić V (2002) Biogenesis of small nucleolar ribonucleoproteins. Curr Opin Cell Biol 14(3):319–327

    Article  CAS  PubMed  Google Scholar 

  33. Ruby JG, Jan CH, Bartel DP (2007) Intronic microRNA precursors that bypass Drosha processing. Nature 448(7149):83–86

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Babiarz JE, Ruby JG, Wang Y, Bartel DP, Blelloch R (2008) Mouse ES cells express endogenous shRNAs, siRNAs, and other microprocessor-independent, Dicer-dependent small RNAs. Genes Dev 22(20):2773–2785. doi:10.1101/gad.1705308

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Berezikov E, Chung WJ, Willis J, Cuppen E, Lai EC (2007) Mammalian mirtron genes. Mol Cell 28(2):328–336. doi:10.1016/j.molcel.2007.09.028

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Rainer J, Ploner C, Jesacher S, Ploner A, Eduardoff M, Mansha M, Wasim M, Panzer-Grümayer R, Trajanoski Z, Niederegger H, Kofler R (2009) Glucocorticoid-regulated microRNAs and mirtrons in acute lymphoblastic leukemia. Leukemia 23(4):746–752. doi:10.1038/leu.2008.370

    Article  CAS  PubMed  Google Scholar 

  37. Jones D, Li Y, He Y, Xu Z, Chen H, Min W (2012) Mirtron MicroRNA-1236 inhibits VEGFR-3 signaling during inflammatory lymphangiogenesis. Arterioscler Thromb Vasc Biol 32(3):633–642. doi:10.1161/ATVBAHA.111.243576

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Slezak-Prochazka I, Kluiver J, de Jong D, Kortman G, Halsema N, Poppema S, Kroesen BJ, van den Berg A (2013) Cellular localization and processing of primary transcripts of exonic MicroRNAs. PLoS One 8(9):e76647. doi:10.1371/journal.pone.0076647

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Friedman RC, Farh KKH, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19(1):92–105. doi:10.1101/gr.082701.108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Dogini DB, Pascoal VDB, Avansini SH, Vieira AS, Pereira TC, Lopes-Cendes I (2014) The new world of RNAs. Genet Mol Biol 37(1):285–293

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Lai EC, Tam B, Rubin GM (2005) Pervasive regulation of Drosophila Notch target genes by GY-box-, Brd-box-, and K-box-class microRNAs. Genes Dev 19(9):1067–1080

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP (2002) Prediction of plant microRNA targets. Cell 110(4):513–520

    Article  CAS  PubMed  Google Scholar 

  43. Elbashir SM, Lendeckel W, Tuschl T (2001) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15(2):188–200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Souret FF, Kastenmayer JP, Green PJ (2004) AtXRN4 degrades mRNA in Arabidopsis and its substrates include selected miRNA targets. Mol Cell 15(2):173–183. doi:10.1016/j.molcel.2004.06.006

    Article  CAS  PubMed  Google Scholar 

  45. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233. doi:10.1016/j.cell.2009.01.002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Fabian MR, Sonenberg N, Filipowicz W (2010) Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79:351–379. doi:10.1146/annurev-biochem-060308-103103

    Article  CAS  PubMed  Google Scholar 

  47. Bashkirov VI, Scherthan H, Solinger JA, Buerstedde JM, Heyer WD (1997) A mouse cytoplasmic exoribonuclease (mXRN1p) with preference for G4 tetraplex substrates. J Cell Biol 136(4):761–773

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Kulkarni M, Ozgur S, Stoecklin G (2010) On track with P-bodies. Biochem Soc Trans 38(Pt 1):242–251. doi:10.1042/BST0380242

    Article  CAS  PubMed  Google Scholar 

  49. Basu U, Lozynska O, Moorwood C, Patel G, Wilton SD, Khurana TS (2011) Translational regulation of utrophin by miRNAs. PLoS One 6(12):e29376. doi:10.1371/journal.pone.0029376

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Kloosterman WP, Wienholds E, Ketting RF, Plasterk RHA (2004) Substrate requirements for let-7 function in the developing zebrafish embryo. Nucleic Acids Res 32(21):6284–6291. doi:10.1093/nar/gkh968

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I (2008) MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 455(7216):1124–1128. doi:10.1038/nature07299

    Article  CAS  PubMed  Google Scholar 

  52. Fang Z, Rajewsky N (2011) The impact of miRNA target sites in coding sequences and in 3′UTRs. PLoS One 6(3):e18067. doi:10.1371/journal.pone.0018067

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Vasudevan S, Steitz JA (2007) AU-rich-element-mediated upregulation of translation by FXR1 and Argonaute 2. Cell 128(6):1105–1118. doi:10.1016/j.cell.2007.01.038

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Ørom UA, Nielsen FC, Lund AH (2008) MicroRNA-10a binds the 5′UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 30(4):460–471. doi:10.1016/j.molcel.2008.05.001

    Article  PubMed  CAS  Google Scholar 

  55. Tsai NP, Lin YL, Wei LN (2009) MicroRNA mir-346 targets the 5′-untranslated region of receptor-interacting protein 140 (RIP140) mRNA and up-regulates its protein expression. Biochem J 424(3):411–418. doi:10.1042/BJ20090915

    Article  CAS  PubMed  Google Scholar 

  56. Place RF, Li LC, Pookot D, Noonan EJ, Dahiya R (2008) MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci U S A 105(5):1608–1613. doi:10.1073/pnas.0707594105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Hwang HW, Wentzel EA, Mendell JT (2007) A hexanucleotide element directs microRNA nuclear import. Science 315(5808):97–100. doi:10.1126/science.1136235

    Article  CAS  PubMed  Google Scholar 

  58. Jeffries CD, Fried HM, Perkins DO (2010) Additional layers of gene regulatory complexity from recently discovered microRNA mechanisms. Int J Biochem Cell Biol 42(8):1236–1242. doi:10.1016/j.biocel.2009.02.006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Ohrt T, Mütze J, Staroske W, Weinmann L, Höck J, Crell K, Meister G, Schwille P (2008) Fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy reveal the cytoplasmic origination of loaded nuclear RISC in vivo in human cells. Nucleic Acids Res 36(20):6439–6449. doi:10.1093/nar/gkn693

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Di Leva G, Garofalo M, Croce CM (2014) MicroRNAs in cancer. Annu Rev Pathol 9:287–314. doi:10.1146/annurev-pathol-012513-104715

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  61. Merritt WM, Lin YG, Han LY, Kamat AA, Spannuth WA, Schmandt R, Urbauer D, Pennacchio LA, Cheng JF, Nick AM, Deavers MT, Mourad-Zeidan A, Wang H, Mueller P, Lenburg ME, Gray JW, Mok S, Birrer MJ, Lopez-Berestein G, Coleman RL, Bar-Eli M, Sood AK (2008) Dicer, Drosha, and outcomes in patients with ovarian cancer. N Engl J Med 359(25):2641–2650. doi:10.1056/NEJMoa0803785

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Wu D, Tao J, Xu B, Li P, Lu Q, Zhang W (2012) Downregulation of Dicer, a component of the microRNA machinery, in bladder cancer. Mol Med Rep 5(3):695–699. doi:10.3892/mmr.2011.711

    CAS  PubMed  Google Scholar 

  63. Kumar MS, Lu J, Mercer KL, Golub TR, Jacks T (2007) Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet 39(5):673–677. doi:10.1038/ng2003

    Article  CAS  PubMed  Google Scholar 

  64. Kim B, Lee JH, Park JW, Kwon TK, Baek SK, Hwang I, Kim S (2014) An essential microRNA maturing microprocessor complex component DGCR8 is up-regulated in colorectal carcinomas. Clin Exp Med 14(3):331–336. doi:10.1007/s10238-013-0243-8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Ma Z, Swede H, Cassarino D, Fleming E, Fire A, Dadras SS (2011) Up-regulated Dicer expression in patients with cutaneous melanoma. PLoS One 6(6):e20494. doi:10.1371/journal.pone.0020494

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Zhu S, Pan W, Qian Y (2013) MicroRNA in immunity and autoimmunity. J Mol Med 91(9):1039–1050. doi:10.1007/s00109-013-1043-z

    Article  CAS  PubMed  Google Scholar 

  67. Divekar AA, Dubey S, Gangalum PR, Singh RR (2011) Dicer insufficiency and microRNA-155 overexpression in lupus regulatory T cells: an apparent paradox in the setting of an inflammatory milieu. J Immunol 186(2):924–930. doi:10.4049/jimmunol.1002218

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Zhang YN, Cao PP, Zhang XH, Lu X, Liu Z (2012) Expression of microRNA machinery proteins in different types of chronic rhinosinusitis. Laryngoscope 122(12):2621–2627. doi:10.1002/lary.23517

    Article  CAS  PubMed  Google Scholar 

  69. Nishikura K (2010) Functions and regulation of RNA editing by ADAR deaminases. Annu Rev Biochem 79:321–349. doi:10.1146/annurev-biochem-060208-105251

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Choudhury Y, Tay FC, Lam DH, Sandanaraj E, Tang C, Ang BT, Wang S (2012) Attenuated adenosine-to-inosine editing of microRNA-376a* promotes invasiveness of glioblastoma cells. J Clin Invest 122(11):4059–4076. doi:10.1172/JCI62925

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Yang JH, Luo X, Nie Y, Su Y, Zhao Q, Kabir K, Zhang D, Rabinovici R (2003) Widespread inosine-containing mRNA in lymphocytes regulated by ADAR1 in response to inflammation. Immunology 109(1):15–23

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Weber B, Stresemann C, Brueckner B, Lyko F (2007) Methylation of human microRNA genes in normal and neoplastic cells. Cell Cycle 6(9):1001–1005

    Article  CAS  PubMed  Google Scholar 

  73. Hassan T, Carroll TP, Buckley PG, Cummins R, O’Neill SJ, McElvaney NG, Greene CM (2014) miR-199a-5p silencing regulates the unfolded protein response in chronic obstructive pulmonary disease and α1-antitrypsin deficiency. Am J Respir Crit Care Med 189(3):263–273. doi:10.1164/rccm.201306-1151OC

    Article  CAS  PubMed  Google Scholar 

  74. Ueda Y, Ando T, Nanjo S, Ushijima T, Sugiyama T (2014) DNA methylation of MicroRNA-124a is a potential risk marker of colitis-associated cancer in patients with ulcerative colitis. Dig Dis Sci 59(10):2444–2451. doi:10.1007/s10620-014-3193-4

    Article  CAS  PubMed  Google Scholar 

  75. dos Santos Ferreira AC, Robaina MC, de Rezende LMM, Severino P, Klumb CE (2014) Histone deacetylase inhibitor prevents cell growth in Burkitt’s lymphoma by regulating PI3K/Akt pathways and leads to upregulation of miR-143, miR-145, and miR-101. Ann Hematol 93(6):983–993. doi:10.1007/s00277-014-2021-4

    Google Scholar 

  76. Ye XM, Zhu HY, Bai WD, Wang T, Wang L, Chen Y, Yang AG, Jia LT (2014) Epigenetic silencing of miR-375 induces trastuzumab resistance in HER2-positive breast cancer by targeting IGF1R. BMC Cancer 14:134. doi:10.1186/1471-2407-14-134

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  77. Lim YY, Wright JA, Attema JL, Gregory PA, Bert AG, Smith E, Thomas D, Lopez AF, Drew PA, Khew-Goodall Y, Goodall GJ (2013) Epigenetic modulation of the miR-200 family is associated with transition to a breast cancer stem-cell-like state. J Cell Sci 126(Pt 10):2256–2266. doi:10.1242/jcs.122275

    Article  CAS  PubMed  Google Scholar 

  78. Hammond SM (2006) RNAi, microRNAs, and human disease. Cancer Chemother Pharmacol 58(Suppl 1):s63–s68. doi:10.1007/s00280-006-0318-2

    Article  CAS  PubMed  Google Scholar 

  79. Chatila WM, Criner GJ, Hancock WW, Akimova T, Moldover B, Chang JK, Cornwell W, Santerre M, Rogers TJ (2014) Blunted expression of miR-199a-5p in regulatory T cells of patients with chronic obstructive pulmonary disease compared to unaffected smokers. Clin Exp Immunol 177(1):341–352. doi:10.1111/cei.12325

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Guo Z, Wu R, Gong J, Zhu W, Li Y, Wang Z, Li N, Li J (2014) Altered microRNAs expression in inflamed and non-inflamed terminal ileal mucosa of adult patients with active Crohn’s disease. J Gastroenterol Hepatol. doi:10.1111/jgh.12644

    Google Scholar 

  81. Keller A, Leidinger P, Steinmeyer F, Stähler C, Franke A, Hemmrich-Stanisak G, Kappel A, Wright I, Dörr J, Paul F, Diem R, Tocariu-Krick B, Meder B, Backes C, Meese E, Ruprecht K (2014) Comprehensive analysis of microRNA profiles in multiple sclerosis including next-generation sequencing. Mult Scler 20(3):295–303. doi:10.1177/1352458513496343

    Article  CAS  PubMed  Google Scholar 

  82. O’Connell R, Rao D, Baltimore D (2012) microRNA regulation of inflammatory responses. Annu Rev Immunol 30:295–312. doi:10.1146/annurev-immunol-020711-075013

    Article  PubMed  CAS  Google Scholar 

  83. Oglesby IK, Chotirmall SH, McElvaney NG, Greene CM (2013) Regulation of cystic fibrosis transmembrane conductance regulator by microRNA-145, -223, and -494 is altered in ΔF508 cystic fibrosis airway epithelium. J Immunol 190(7):3354–3362. doi:10.4049/jimmunol.1202960

    Article  CAS  PubMed  Google Scholar 

  84. Santini P, Politi L, Vedova PD, Scandurra R, Scotto d’Abusco A (2014) The inflammatory circuitry of miR-149 as a pathological mechanism in osteoarthritis. Rheumatol Int 34(5):711–716. doi:10.1007/s00296-013-2754-8

    Article  CAS  PubMed  Google Scholar 

  85. Mishra PJ, Humeniuk R, Mishra PJ, Longo-Sorbello GSA, Banerjee D, Bertino JR (2007) A miR-24 microRNA binding-site polymorphism in dihydrofolate reductase gene leads to methotrexate resistance. Proc Natl Acad Sci U S A 104(33):13513–13518. doi:10.1073/pnas.0706217104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Bao L, Zhou M, Wu L, Lu L, Goldowitz D, Williams RW, Cui Y (2007) PolymiRTS database: linking polymorphisms in microRNA target sites with complex traits. Nucleic Acids Res 35(Database issue):D51–D54. doi:10.1093/nar/gkl797

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Teo MTW, Landi D, Taylor CF, Elliott F, Vaslin L, Cox DG, Hall J, Landi S, Bishop DT, Kiltie AE (2012) The role of microRNA-binding site polymorphisms in DNA repair genes as risk factors for bladder cancer and breast cancer and their impact on radiotherapy outcomes. Carcinogenesis 33(3):581–586. doi:10.1093/carcin/bgr300

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Liang D, Meyer L, Chang DW, Lin J, Pu X, Ye Y, Gu J, Wu X, Lu K (2010) Genetic variants in MicroRNA biosynthesis pathways and binding sites modify ovarian cancer risk, survival, and treatment response. Cancer Res 70(23):9765–9776. doi:10.1158/0008-5472.CAN-10-0130

    Article  CAS  PubMed  Google Scholar 

  89. Landi D, Gemignani F, Naccarati A, Pardini B, Vodicka P, Vodickova L, Novotny J, Försti A, Hemminki K, Canzian F, Landi S (2008) Polymorphisms within micro-RNA-binding sites and risk of sporadic colorectal cancer. Carcinogenesis 29(3):579–584. doi:10.1093/carcin/bgm304

    Article  CAS  PubMed  Google Scholar 

  90. Xiong F, Wu C, Chang J, Yu D, Xu B, Yuan P, Zhai K, Xu J, Tan W, Lin D (2011) Genetic variation in an miRNA-1827 binding site in MYCL1 alters susceptibility to small-cell lung cancer. Cancer Res 71(15):5175–5181. doi:10.1158/0008-5472.CAN-10-4407

    Article  CAS  PubMed  Google Scholar 

  91. Nossent AY, Hansen JL, Doggen C, Quax PHA, Sheikh SP, Rosendaal FR (2011) SNPs in microRNA binding sites in 3′-UTRs of RAAS genes influence arterial blood pressure and risk of myocardial infarction. Am J Hypertens 24(9):999–1006. doi:10.1038/ajh.2011.92

    Article  PubMed  CAS  Google Scholar 

  92. Cristaudo A, Foddis R, Bonotti A, Simonini S, Vivaldi A, Guglielmi G, Bruno R, Landi D, Gemignani F, Landi S (2010) Polymorphisms in the putative micro-RNA-binding sites of mesothelin gene are associated with serum levels of mesothelin-related protein. Occup Environ Med 67(4):233–236. doi:10.1136/oem.2009.049205

    Article  CAS  PubMed  Google Scholar 

  93. Tan Z, Randall G, Fan J, Camoretti-Mercado B, Brockman-Schneider R, Pan L, Solway J, Gern JE, Lemanske RF, Nicolae D, Ober C (2007) Allele-specific targeting of microRNAs to HLA-G and risk of asthma. Am J Hum Genet 81(4):829–834. doi:10.1086/521200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Zwiers A, Kraal L, van de Pouw Kraan TCTM, Wurdinger T, Bouma G, Kraal G (2012) Cutting edge: a variant of the IL-23R gene associated with inflammatory bowel disease induces loss of microRNA regulation and enhanced protein production. J Immunol 188(4):1573–1577. doi:10.4049/jimmunol.1101494

    Article  CAS  PubMed  Google Scholar 

  95. Wu LS, Li FF, Sun LD, Li D, Su J, Kuang YH, Chen G, Chen XP, Chen X (2011) A miRNA-492 binding-site polymorphism in BSG (basigin) confers risk to psoriasis in central south Chinese population. Hum Genet 130(6):749–757. doi:10.1007/s00439-011-1026-5

    Article  CAS  PubMed  Google Scholar 

  96. Hasani SS, Hashemi M, Eskandari-Nasab E, Naderi M, Omrani M, Sheybani-Nasab M (2014) A functional polymorphism in the miR-146a gene is associated with the risk of childhood acute lymphoblastic leukemia: a preliminary report. Tumour Biol 35(1):219–225. doi:10.1007/s13277-013-1027-1

    Article  CAS  PubMed  Google Scholar 

  97. Hoffman AE, Zheng T, Yi C, Leaderer D, Weidhaas J, Slack F, Zhang Y, Paranjape T, Zhu Y (2009) microRNA miR-196a-2 and breast cancer: a genetic and epigenetic association study and functional analysis. Cancer Res 69(14):5970–5977. doi:10.1158/0008-5472.CAN-09-0236

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Shi TY, Chen XJ, Zhu ML, Wang MY, He J, Yu KD, Shao ZM, Sun MH, Zhou XY, Cheng X, Wu X, Wei Q (2013) A pri-miR-218 variant and risk of cervical carcinoma in Chinese women. BMC Cancer 13:19. doi:10.1186/1471-2407-13-19

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Jiménez-Morales S, Gamboa-Becerra R, Baca V, Del Río-Navarro BE, López-Ley DY, Velázquez-Cruz R, Saldaña-Alvarez Y, Salas-Martínez G, Orozco L (2012) MiR-146a polymorphism is associated with asthma but not with systemic lupus erythematosus and juvenile rheumatoid arthritis in Mexican patients. Tissue Antigens 80(4):317–321. doi:10.1111/j.1399-0039.2012.01929.x

    Article  PubMed  CAS  Google Scholar 

  100. Huang Y, Yi X, Jian Z, Wei C, Li S, Cai C, Zhang P, Li K, Guo S, Liu L, Shi Q, Gao T, Li C (2013) A single-nucleotide polymorphism of miR-196a-2 and vitiligo: an association study and functional analysis in a Han Chinese population. Pigment Cell Melanoma Res 26(3):338–347. doi:10.1111/pcmr.12081

    Article  CAS  PubMed  Google Scholar 

  101. Christodoulatos GS, Dalamaga M (2014) Micro-RNAs as clinical biomarkers and therapeutic targets in breast cancer: Quo vadis? World J Clin Oncol 5(2):71–81. doi:10.5306/wjco.v5.i2.71

    Article  PubMed Central  PubMed  Google Scholar 

  102. Gao Y, Gao F, Ma JL, Sun WZ, Song LP (2014) The potential clinical applications and prospects of microRNAs in lung cancer. Onco Targets Ther 7:901–906. doi:10.2147/OTT.S62227

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  103. Shin VY, Chu KM (2014) MiRNA as potential biomarkers and therapeutic targets for gastric cancer. World J Gastroenterol 20(30):10432–10439

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Zeng L, Cui J, Wu H, Lu Q (2014) The emerging role of circulating microRNAs as biomarkers in autoimmune diseases. Autoimmunity 47:419–429

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara de Santi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

de Santi, C., Greene, C.M. (2015). The Biology of MicroRNA. In: Greene, C. (eds) MicroRNAs and Other Non-Coding RNAs in Inflammation. Progress in Inflammation Research. Springer, Cham. https://doi.org/10.1007/978-3-319-13689-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13689-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13688-2

  • Online ISBN: 978-3-319-13689-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics