Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 887 Accesses

Abstract

This chapter develops and explains the criteria for obtaining self-compacting fiber reinforced concrete (SCFRC) and the analysis of its production quality continuity in a precast industry and its ulterior application to produce prestressed concrete beams to minimize traditional transverse rebars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. EFNARC. 2005. The European guidelines for self-compacting concrete. specification, production and use. http://www.efnarc.org/pdf/SCCGuidelinesMay2005.pdf.

  2. Serna, P., Cuenca, E. and M.S. Alves de Oliveira, 2011. Self-compacting fiber reinforced in precast elements production for shear resistance. In Dedicated to Innovation: 50 years MC-Bauchemie, MC-Bauchemie Müller GmbH Co. KG.

    Google Scholar 

  3. Bolomey, J. 1947. The grading of aggregate and its influence on the characteristics of concrete. Revue des Matériaux de Construction et des Trabaux Publiques 147–149.

    Google Scholar 

  4. Bernard, E.S. 2002. Correlations in the behaviour of fibre reinforced shotcrete beam and panel specimens. Materials and Structures 35: 156–164.

    Article  Google Scholar 

  5. di Prisco, M., Plizzari, G.A. and L. Vandewalle, 2009. Fibre reinforced concrete: New design perspectives. Materials and Structures 42: 1261–1281.

    Article  Google Scholar 

  6. EHE-08. 2008. Instrucción de Hormigón Estructural EHE-08, Comisión Permanente del Hormigón, Ministerio de Fomento, 2008; URL (Spanish Instruction EHE-08 (english versión)). www.fomento.gob.es/MFOM/LANG_CASTELLANO/ORGANOS_COLEGIADOS/CPH/Publicaciones/EHE_ingles/.

  7. Eurocode 2: Design of Concrete Structures—EN 1992-1-1, European Committee for Standardization; 2005.

    Google Scholar 

  8. MC2010. 2012. Fib Bulletin 65–66. Model Code—Final draft.

    Google Scholar 

  9. Rilem, T.C. 2003. 162-TDF: Test and design methods for steel fibre reinforced concrete, Stress-strain design method. Final Recommendation. Materials and Structures 36: 560–567.

    Article  Google Scholar 

  10. Vecchio, F.J., and M.P. Collins, 1986. The modified compression field theory for reinforced concrete elements subjected to shear. ACI Journal 83(2): 219–231.

    Google Scholar 

  11. Cladera, A., and A.R. Marí, 2007. Shear strength in the new Eurocode 2. A step forward? Structural Concrete 8(2): 57–66.

    Article  Google Scholar 

  12. Cladera, A., and A.R. Marí, 2004. Shear design procedure for reinforced normal and high-strength concrete beams using artificial neural networks. Part II: beams with stirrups. Engineering Structures 26: 927–936.

    Article  Google Scholar 

  13. European Concrete Platform ASBL. 2008. Commentary to Eurocode 2. Belgium: Brussels.

    Google Scholar 

  14. Leonhardt, F. 1970. Shear and torsion in prestressed concrete. In FIP Congress, Prague.

    Google Scholar 

  15. Leonhardt, F., and R. Walther, 1964. The Stuttgart shear tests, 1961. Cement and Concrete Association.

    Google Scholar 

  16. Placas, A., and P.E. Regan, 1971. Shear failures of reinforced concrete beams. Proceedings of American Concrete Institute 68: 763–773.

    Google Scholar 

  17. Zsutty, T.C. 1972. Unpublished memorandum to reinforced concrete research council.

    Google Scholar 

  18. ACI-ASCE Committee.426. 1973. The shear strength of reinforced concrete members. Journal of the Structural Division ASCE 1973; 99 (6): 1091–1187.

    Google Scholar 

  19. Minelli, F. 2005. Plain and fiber reinforced concrete beams under shear loading: Structural behavior and design aspects. PhD thesis, Brescia, Italy: Department of Civil Engineering, University of Brescia.

    Google Scholar 

  20. Cladera, A., and A.R. Marí, 2004. Shear design procedure for reinforced normal and high-strength concrete beams using artificial neural networks. Part I: beams without stirrups. Engineering Structures 26(7): 917–926.

    Article  Google Scholar 

  21. Swamy, R.N., and H.M. Bahia, 1985. The effectiveness of steel fibers as shear reinforcement. Concrete International 7(3): 35–40.

    Google Scholar 

  22. Cuenca, E., and P. Serna, 2013. Shear behavior of prestressed precast beams made of self-compacting fiber reinforced concrete. Construction and Building Materials 45: 145–156.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Estefanía Cuenca .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cuenca, E. (2015). Experimental Tests on Parameters Influencing on Shear. In: On Shear Behavior of Structural Elements Made of Steel Fiber Reinforced Concrete. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-13686-8_4

Download citation

Publish with us

Policies and ethics