Skip to main content

The Cardiovascular Adrenergic System and Physical Exercise

  • Chapter
  • First Online:
The Cardiovascular Adrenergic System

Abstract

The beneficial effects of physical exercise for health are due to physiological adaptations that coordinate several organs. In short term, these adaptations occur to supply the increased metabolic demand imposed by exercising muscles, and in long term, to reduce the homeostatic disturbance caused by exercise training. In this sense, the autonomic nervous system plays a crucial role in integrating these short- and long-term physical exercise adjustments by modulating the sympathetic and parasympathetic outflows in health and disease conditions. Additionally, accumulated evidences have shown that exercise training is an efficient strategy for treatment and prevention of cardiovascular diseases. For instance, one striking effect of exercise training is a reduction in sympathetic hyperactivity observed in heart failure. This response results in a better autonomic control of cardiovascular system by improving the cardiac and vascular adrenergic responses to exercise stimulus in heart failure.

In this chapter, the contribution of adrenergic system for the cardiovascular adaptations to short- and long-term physical exercise adjustments is reviewed in health and disease conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Akt:

Protein kinase B

EC:

Excitation–contraction

GRK2:

G-protein-coupled kinase-2

HCN4:

Hyperpolarization-activated cyclic nucleotide-gated channel 4

HF:

Heart failure

ICa :

L-type Ca2 + channels

NCX:

Sarcolemmal Na+/Ca2 + exchanger

NFAT:

Calcineurin/nuclear factor of activated T cell

PI3K:

Phosphatidylinositide-3-kinase

PKA:

Protein kinase A

PLB:

Phospholamban

RyR:

Ryanodine receptors

SERCA:

SR Ca2 + ATPase

SR:

Sarcoplasmic reticulum

T-tubule:

Transverse tubule

β-AR:

β-Adrenergic receptor

References

  1. Kokkinos P, Myers J. Exercise and physical activity: clinical outcomes and applications. ­Circulation. 2010;122(16):1637–48.

    PubMed  Google Scholar 

  2. WHO. Global health risks: mortality and burden of disease attributable to selected major risks. Geneva: World Health Organization; 2009.

    Google Scholar 

  3. WHO. Global recommendations on physical activity for health. Geneva: World Health ­Organization; 2010.

    Google Scholar 

  4. Hallal PC, Andersen LB, Bull FC, Guthold R, Haskell W, Ekelund U, et al. Global physical activity levels: surveillance progress, pitfalls, and prospects. Lancet. 2012;380(9838):247–57.

    PubMed  Google Scholar 

  5. Booth FW, Lees SJ. Fundamental questions about genes, inactivity, and chronic diseases. Physiol Genomics. 2007;28(2):146–57.

    CAS  PubMed  Google Scholar 

  6. Myers J, Prakash M, Froelicher V, Do D, Partington S, Atwood JE. Exercise capacity and mortality among men referred for exercise testing. N Engl J Med. 2002;346(11):793–801.

    PubMed  Google Scholar 

  7. Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM, et al. American College of Sports Medicine position stand. Quantity and quality of exercise for ­developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43(7):1334–59.

    PubMed  Google Scholar 

  8. Egan B, Zierath JR. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab. 2013;17(2):162–84.

    CAS  PubMed  Google Scholar 

  9. Tipton CM. History of exercise physiology. Champaigh: Human Kinetics; 2014.

    Google Scholar 

  10. Brum PC, Bacurau AV, Cunha TF, Bechara LR, Moreira JB. Skeletal myopathy in heart ­failure: effects of aerobic exercise training. Exp Physiol. 2014;99(4):616–20.

    CAS  PubMed  Google Scholar 

  11. von Haehling S Steinbeck L Doehner W Springer J Anker SD. Muscle wasting in heart failure: An overview. Int J Biochem Cell Biol. 2013;45(10):2257–65.

    Google Scholar 

  12. Nobrega AC, O’Leary D, Silva BM, Marongiu E, Piepoli MF, Crisafulli A. Neural regulation of cardiovascular response to exercise: role of central command and peripheral afferents. Biomed Res Int. 2014;2014:478965.

    PubMed Central  PubMed  Google Scholar 

  13. Lymperopoulos A. Physiology and pharmacology of the cardiovascular adrenergic system. Front Physiol. 2013;4:240.

    PubMed Central  PubMed  Google Scholar 

  14. Goodwin GM, McCloskey DI, Mitchell JH. Cardiovascular and respiratory responses to changes in central command during isometric exercise at constant muscle tension. J Physiol. 1972;226(1):173–90.

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Mitchell JH. Neural control of the circulation during exercise: insights from the 1970–1971 Oxford studies. Exp Physiol. 2012;97(1):14–9.

    PubMed  Google Scholar 

  16. Strange S, Secher NH, Pawelczyk JA, Karpakka J, Christensen NJ, Mitchell JH, et al. Neural control of cardiovascular responses and of ventilation during dynamic exercise in man. J Physiol. 1993;470:693–704.

    PubMed Central  CAS  PubMed  Google Scholar 

  17. Krogh A, Lindhard J. A comparison between voluntary and electrically induced muscular work in man. J Physiol. 1917;51(3):182–201.

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Alam M, Smirk FH. Observations in man upon a blood pressure raising reflex arising from the voluntary muscles. J Physiol. 1937;89(4):372–83.

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Alam M, Smirk FH. Observations in man on a pulse-accelerating reflex from the voluntary muscles of the legs. J Physiol. 1938;92(2):167–77.

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Murphy MN, Mizuno M, Mitchell JH, Smith SA. Cardiovascular regulation by skeletal ­muscle reflexes in health and disease. Am J Physiol Heart Circ Physiol. 2011;301(4):­H1191–204.

    PubMed Central  CAS  PubMed  Google Scholar 

  21. McCloskey DI, Mitchell JH. Reflex cardiovascular and respiratory responses originating in exercising muscle. J Physiol. 1972;224(1):173–86.

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Mitchell JH, Kaufman MP, Iwamoto GA. The exercise pressor reflex: its cardiovascular ­effects, afferent mechanisms, and central pathways. Annu Rev Physio. 1983;45:229–42.

    CAS  Google Scholar 

  23. Kaufman MP, Longhurst JC, Rybicki KJ, Wallach JH, Mitchell JH. Effects of static muscular contraction on impulse activity of groups III and IV afferents in cats. J Appl Physiol Respir, Environ Exerc Physiol. 1983;55(1 Pt 1):105–12.

    CAS  Google Scholar 

  24. Victor RG, Bertocci LA, Pryor SL, Nunnally RL. Sympathetic nerve discharge is coupled to muscle cell pH during exercise in humans. J Clin Invest. 1988;82(4):1301–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Rowell LB, O’Leary DS. Reflex control of the circulation during exercise: chemoreflexes and mechanoreflexes. J Appl Physiol. 1990;69(2):407–18.

    CAS  PubMed  Google Scholar 

  26. Almeida MB, Araújo CGS. Effects of aerobic training on heart rate. Revista Brasileira de Medicina do Esporte. 2003;9(2):113–20.

    Google Scholar 

  27. Robinson BF, Epstein SE, Beiser GD, Braunwald E. Control of heart rate by the autonomic nervous system. Studies in man on the interrelation between baroreceptor mechanisms and exercise. Circ Res. 1966;19(2):400–11.

    CAS  PubMed  Google Scholar 

  28. Negrao CE, Moreira ED, Brum PC, Denadai ML, Krieger EM. Vagal and sympathetic control of heart rate during exercise by sedentary and exercise-trained rats. Braz J Med Biol Res. 1992;25(10):1045–52.

    CAS  PubMed  Google Scholar 

  29. Gallo Junior L Maciel BC Marin-Neto JA Martins LE. Sympathetic and parasympathetic changes in heart rate control during dynamic exercise induced by endurance training in man. Braz J Med Biol Res = Revista brasileira de pesquisas medicas e biologicas/Sociedade Brasileira de Biofisica [et al]. 1989;22(5):631–43.

    CAS  PubMed  Google Scholar 

  30. Carter JB, Banister EW, Blaber AP. Effect of endurance exercise on autonomic control of heart rate. Sports Med. 2003;33(1):33–46.

    PubMed  Google Scholar 

  31. Voulgari C, Pagoni S, Vinik A, Poirier P. Exercise improves cardiac autonomic function in obesity and diabetes. Metabolism. 2013;62(5):609–21.

    CAS  PubMed  Google Scholar 

  32. Negrao CE, Moreira ED, Santos MC, Farah VM, Krieger EM. Vagal function impairment after exercise training. J Appl Physiol. 1992;72(5):1749–53.

    CAS  PubMed  Google Scholar 

  33. Lewis SF, Nylander E, Gad P, Areskog NH. Non-autonomic component in bradycardia of endurance trained men at rest and during exercise. Acta Physiol Scand. 1980;109(3):297–305.

    CAS  PubMed  Google Scholar 

  34. De Angelis K, Wichi RB, Jesus WR, Moreira ED, Morris M, Krieger EM, et al. Exercise training changes autonomic cardiovascular balance in mice. J Appl Physiol. 2004;96(6):2174–8.

    PubMed  Google Scholar 

  35. Medeiros A, Oliveira EM, Gianolla R, Casarini DE, Negrao CE, Brum PC. Swimming training increases cardiac vagal activity and induces cardiac hypertrophy in rats. Braz J Med Biol Res. 2004;37(12):1909–17.

    CAS  PubMed  Google Scholar 

  36. Azevedo LF, Perlingeiro PS, Hachul DT, Gomes-Santos IL, Brum PC, Allison TG, et al. Sport modality affects bradycardia level and its mechanisms of control in professional athletes. Int J Sports Med. 2014;35(11):954–9. doi: 10.1055/s-0033-1364024. Epub 2 Jun 2014.

    Google Scholar 

  37. Azevedo LF, Brum PC, Rosemblatt D, Perlingeiro Pde S, Barretto AC, Negrao CE, et al. Cardiac and metabolic characteristics in long distance runners of sport and exercise cardiology outpatient facility of a tertiary hospital. Arquivos brasileiros de cardiologia. 2007;88(1):17–25.

    PubMed  Google Scholar 

  38. Furlan R, Piazza S, Dell’Orto S, Gentile E, Cerutti S, Pagani M, et al. Early and late effects of exercise and athletic training on neural mechanisms controlling heart rate. Cardiovasc Res. 1993;27(3):482–8.

    CAS  PubMed  Google Scholar 

  39. Katona PG, McLean M, Dighton DH, Guz A. Sympathetic and parasympathetic cardiac control in athletes and nonathletes at rest. J Appl Physiol Respir Environ Exerc Physiol. 1982;52(6):1652–7.

    CAS  PubMed  Google Scholar 

  40. Evangelista FS, Martuchi SE, Negrao CE, Brum PC. Loss of resting bradycardia with detraining is associated with intrinsic heart rate changes. Braz J Med Biol Res. 2005;38(7):1141–6.

    CAS  PubMed  Google Scholar 

  41. Yamamoto K, Miyachi M, Saitoh T, Yoshioka A, Onodera S. Effects of endurance training on resting and post-exercise cardiac autonomic control. Med Sci Sports Exerc. 2001;33(9):1496–502.

    CAS  PubMed  Google Scholar 

  42. D’Souza A, Bucchi A, Johnsen AB, Logantha SJ, Monfredi O, Yanni J, et al. Exercise ­training reduces resting heart rate via downregulation of the funny channel HCN4. Nat Commun. 2014;5:3775.

    PubMed Central  PubMed  Google Scholar 

  43. Stein R, Medeiros CM, Rosito GA, Zimerman LI, Ribeiro JP. Intrinsic sinus and atrioventricular node electrophysiologic adaptations in endurance athletes. J Am Coll Cardiol. 2002;39(6):1033–8.

    PubMed  Google Scholar 

  44. Shi X, Stevens GH, Foresman BH, Stern SA, Raven PB. Autonomic nervous system control of the heart: endurance exercise training. Med Sci Sports Exerc. 1995;27(10):1406–13.

    CAS  PubMed  Google Scholar 

  45. Smith ML, Hudson DL, Graitzer HM, Raven PB. Exercise training bradycardia: the role of autonomic balance. Med Sci Sports Exerc. 1989;21(1):40–4.

    CAS  PubMed  Google Scholar 

  46. Rolim NP, Medeiros A, Rosa KT, Mattos KC, Irigoyen MC, Krieger EM, et al. Exercise training improves the net balance of cardiac Ca2+ handling protein expression in heart failure. Physiol Genomics. 2007;29(3):246–52.

    CAS  PubMed  Google Scholar 

  47. Gava NS, Veras-Silva AS, Negrao CE, Krieger EM. Low-intensity exercise training attenuates cardiac beta-adrenergic tone during exercise in spontaneously hypertensive rats. ­Hypertension. 1995;26(6 Pt 2):1129–33.

    CAS  PubMed  Google Scholar 

  48. Medeiros A, Rolim NP, Oliveira RS, Rosa KT, Mattos KC, Casarini DE, et al. Exercise training delays cardiac dysfunction and prevents calcium handling abnormalities in sympathetic hyperactivity-induced heart failure mice. J Appl Physiol. 2008;104(1):103–9.

    CAS  PubMed  Google Scholar 

  49. Iellamo F, Legramante JM, Pigozzi F, Spataro A, Norbiato G, Lucini D, et al. Conversion from vagal to sympathetic predominance with strenuous training in high-performance world class athletes. Circulation. 2002;105(23):2719–24.

    PubMed  Google Scholar 

  50. Song LS, Wang SQ, Xiao RP, Spurgeon H, Lakatta EG, Cheng H. beta-Adrenergic stimulation synchronizes intracellular Ca(2+) release during excitation-contraction coupling in cardiac myocytes. Circ Res. 2001;88(8):794–801.

    CAS  PubMed  Google Scholar 

  51. Marks AR. Calcium cycling proteins and heart failure: mechanisms and therapeutics. J Clin Invest. 2013;123(1):46–52.

    PubMed Central  CAS  PubMed  Google Scholar 

  52. Zanesco A, Antunes E. Effects of exercise training on the cardiovascular system: pharmacological approaches. Pharmacol Ther. 2007;114(3):307–17.

    CAS  PubMed  Google Scholar 

  53. MacDonnell SM, Kubo H, Crabbe DL, Renna BF, Reger PO, Mohara J, et al. Improved ­myocardial beta-adrenergic responsiveness and signaling with exercise training in hypertension. Circulation. 2005;111(25):3420–8.

    CAS  PubMed  Google Scholar 

  54. Barbier J, Reland S, Ville N, Rannou-Bekono F, Wong S, Carre F. The effects of exercise ­training on myocardial adrenergic and muscarinic receptors. Clin Auton Res. 2006;16(1):61–5.

    PubMed  Google Scholar 

  55. Lahaye Sle D, Gratas-Delamarche A, Malarde L, Vincent S, Zguira MS, Morel SL, et al. Intense exercise training induces adaptation in expression and responsiveness of cardiac beta-adrenoceptors in diabetic rats. Cardiovasc Diabetol. 2010;9:72.

    PubMed  Google Scholar 

  56. Stones R, Natali A, Billeter R, Harrison S, White E. Voluntary exercise-induced changes in beta2-adrenoceptor signalling in rat ventricular myocytes. Exp Physiol. 2008;93(9):1065–75.

    PubMed Central  PubMed  Google Scholar 

  57. Plourde G, Rousseau-Migneron S, Nadeau A. Beta-adrenoceptor adenylate cyclase system adaptation to physical training in rat ventricular tissue. J Appl Physiol (1985). 1991;70(4):1633–8.

    CAS  Google Scholar 

  58. Nieto JL, Laviada ID, Guillen A, Haro A. Adenylyl cyclase system is affected ­differently by ­endurance physical training in heart and adipose tissue. Biochem Pharmacol. 1996;51(10):1321–9.

    CAS  PubMed  Google Scholar 

  59. Wisloff U, Loennechen JP, Currie S, Smith GL, Ellingsen O. Aerobic exercise reduces ­cardiomyocyte hypertrophy and increases contractility, Ca2+ sensitivity and SERCA-2 in rat after myocardial infarction. Cardiovasc Res. 2002;54(1):162–74.

    CAS  PubMed  Google Scholar 

  60. Kemi OJ, Haram PM, Wisloff U, Ellingsen O. Aerobic fitness is associated with cardiomyocyte contractile capacity and endothelial function in exercise training and detraining. ­Circulation. 2004;109(23):2897–904.

    PubMed  Google Scholar 

  61. Rodrigues AC, de Melo Costa J, Alves GB, Ferreira da Silva D, Picard MH, Andrade JL, et al. Left ventricular function after exercise training in young men. Am J Cardiol. 2006;97(7):1089–92.

    PubMed  Google Scholar 

  62. Santulli G, Ciccarelli M, Trimarco B, Iaccarino G. Physical activity ameliorates cardiovascular health in elderly subjects: the functional role of the beta adrenergic system. Front Physiol. 2013;4:209.

    PubMed Central  PubMed  Google Scholar 

  63. Libonati JR. Cardiac Effects of Exercise Training in Hypertension. ISRN Hypertension. 2013;2013:9.

    Google Scholar 

  64. Brum PC, Kosek J, Patterson A, Bernstein D, Kobilka B. Abnormal cardiac function ­associated with sympathetic nervous system hyperactivity in mice. Am J Physiol Heart Circ Physiol. 2002;283(5):H1838–45.

    CAS  PubMed  Google Scholar 

  65. Bristow MR, Ginsburg R, Umans V, Fowler M, Minobe W, Rasmussen R, et al. Beta ­1- and beta 2-adrenergic-receptor subpopulations in nonfailing and failing human ventricular ­myocardium: coupling of both receptor subtypes to muscle contraction and selective beta 1-receptor down-regulation in heart failure. Circ Res. 1986;59(3):297–309.

    CAS  PubMed  Google Scholar 

  66. Brum PC, Rolim NP, Bacurau AV, Medeiros A. Neurohumoral activation in heart failure: the role of adrenergic receptors. Anais da Academia Brasileira de Ciencias. 2006;78(3):485–503.

    CAS  PubMed  Google Scholar 

  67. Bers DM. Altered cardiac myocyte Ca regulation in heart failure. Physiology (Bethesda). 2006;21:380–7.

    CAS  Google Scholar 

  68. Vanzelli AS, Medeiros A, Rolim N, Bartholomeu JB, Cunha TF, Bechara LR, et al. Integrative effect of carvedilol and aerobic exercise training therapies on improving cardiac contractility and remodeling in heart failure mice. PLoS ONE. 2013;8(5):e62452.

    PubMed Central  CAS  PubMed  Google Scholar 

  69. Oliveira RS, Ferreira JC, Gomes ER, Paixao NA, Rolim NP, Medeiros A, et al. Cardiac anti-remodelling effect of aerobic training is associated with a reduction in the calcineurin/NFAT signalling pathway in heart failure mice. J Physiol. 2009;587(Pt 15):3899–910.

    PubMed Central  CAS  PubMed  Google Scholar 

  70. van Berlo JH Maillet M Molkentin JD. Signaling effectors underlying pathologic growth and remodeling of the heart. J Clin Invest. 2013;123(1):37–45.

    PubMed Central  PubMed  Google Scholar 

  71. Triposkiadis F, Karayannis G, Giamouzis G, Skoularigis J, Louridas G, Butler J. The sympathetic nervous system in heart failure physiology, pathophysiology, and clinical implications. J Am Coll Cardiol. 2009;54(19):1747–62.

    CAS  PubMed  Google Scholar 

  72. Leosco D, Parisi V, Femminella GD, Formisano R, Petraglia L, Allocca E, et al. Effects of exercise training on cardiovascular adrenergic system. Front Physiol. 2013;4:348.

    PubMed Central  PubMed  Google Scholar 

  73. Rengo G, Perrone-Filardi P, Femminella GD, Liccardo D, Zincarelli C, de Lucia C, et al. Targeting the beta-adrenergic receptor system through G-protein-coupled receptor kinase 2: a new paradigm for therapy and prognostic evaluation in heart failure: from bench to bedside. Circ Heart Fail. 2012;5(3):385–91.

    CAS  PubMed  Google Scholar 

  74. Bers DM. Cardiac excitation-contraction coupling. Nature. 2002;415(6868):198–205.

    CAS  PubMed  Google Scholar 

  75. Haghighi K, Schmidt AG, Hoit BD, Brittsan AG, Yatani A, Lester JW, et al. Superinhibition of sarcoplasmic reticulum function by phospholamban induces cardiac contractile failure. J Biol Chem. 2001;276(26):24145–52.

    CAS  PubMed  Google Scholar 

  76. Ferreira JC, Bacurau AV, Evangelista FS, Coelho MA, Oliveira EM, Casarini DE, et al. The role of local and systemic renin angiotensin system activation in a genetic model of sympathetic hyperactivity-induced heart failure in mice. Am J Physiol Regul Integr Comp Physiol. 2008;294(1):R26–32.

    CAS  PubMed  Google Scholar 

  77. Bartholomeu JB, Vanzelli AS, Rolim NP, Ferreira JC, Bechara LR, Tanaka LY, et al. Intracellular mechanisms of specific beta-adrenoceptor antagonists involved in improved cardiac function and survival in a genetic model of heart failure. J Mol Cell Cardiol. 2008;45(2):240–9.

    CAS  PubMed  Google Scholar 

  78. Crimi E, Ignarro LJ, Cacciatore F, Napoli C. Mechanisms by which exercise training benefits patients with heart failure. Nat Rev Cardiol. 2009;6(4):292–300.

    PubMed  Google Scholar 

  79. Belardinelli R, Georgiou D, Cianci G, Purcaro A. Randomized, controlled trial of long-term moderate exercise training in chronic heart failure: effects on functional capacity, quality of life, and clinical outcome. Circulation. 1999;99(9):1173–82.

    CAS  PubMed  Google Scholar 

  80. Belardinelli R, Georgiou D, Cianci G, Purcaro A. 10-year exercise training in chronic heart failure: a randomized controlled trial. J Am Coll Cardiol. 2012;60(16):1521–8.

    PubMed  Google Scholar 

  81. Negrao CE, Middlekauff HR. Adaptations in autonomic function during exercise training in heart failure. Heart Fail Rev. 2008;13(1):51–60.

    PubMed  Google Scholar 

  82. Brum PC, Bacurau AV, Medeiros A, Ferreira JC, Vanzelli AS, Negrao CE. Aerobic exercise training in heart failure: impact on sympathetic hyperactivity and cardiac and skeletal muscle function. Braz J Med Biol Res. 2011;44(9):827–35.

    CAS  PubMed  Google Scholar 

  83. Coats AJ, Adamopoulos S, Radaelli A, McCance A, Meyer TE, Bernardi L, et al. Controlled trial of physical training in chronic heart failure. Exercise performance, hemodynamics, ­ventilation, and autonomic function. Circulation. 1992;85(6):2119–31.

    CAS  PubMed  Google Scholar 

  84. Roveda F, Middlekauff HR, Rondon MU, Reis SF, Souza M, Nastari L, et al. The effects of exercise training on sympathetic neural activation in advanced heart failure: a randomized controlled trial. J Am Coll Cardiol. 2003;42(5):854–60.

    PubMed  Google Scholar 

  85. Kemi OJ, MacQuaide N, Hoydal MA, Ellingsen O, Smith GL, Wisloff U. Exercise training corrects control of spontaneous calcium waves in hearts from myocardial infarction heart failure rats. J Cell Physiol. 2012;227(1):20–6.

    CAS  PubMed  Google Scholar 

  86. Leosco D, Rengo G, Iaccarino G, Golino L, Marchese M, Fortunato F, et al. Exercise ­promotes angiogenesis and improves beta-adrenergic receptor signalling in the post-ischaemic failing rat heart. Cardiovasc Res. 2008;78(2):385–94.

    CAS  PubMed  Google Scholar 

  87. de Waard MC, van der Velden J, Bito V, Ozdemir S, Biesmans L, Boontje NM, et al. ­Early exercise training normalizes myofilament function and attenuates left ventricular pump ­dysfunction in mice with a large myocardial infarction. Circ Res. 2007;100(7):1079–88.

    PubMed  Google Scholar 

  88. Johnsen AB, Hoydal M, Rosbjorgen R, Stolen T, Wisloff U. Aerobic interval training partly reverse contractile dysfunction and impaired Ca2 + handling in atrial myocytes from rats with post infarction heart failure. PLoS ONE. 2013;8(6):e66288.

    PubMed Central  CAS  PubMed  Google Scholar 

  89. Bozi LH, Maldonado IR, Baldo MP, Silva MF, Moreira JB, Novaes RD, et al. Exercise training prior to myocardial infarction attenuates cardiac deterioration and cardiomyocyte ­dysfunction in rats. Clinics. 2013;68(4):549–56.

    PubMed Central  PubMed  Google Scholar 

  90. McMullen JR, Jennings GL. Differences between pathological and physiological cardiac ­hypertrophy: novel therapeutic strategies to treat heart failure. Clin Exp Pharmacol Physiol. 2007;34(4):255–62.

    CAS  PubMed  Google Scholar 

  91. Heineke J, Molkentin JD. Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol. 2006;7(8):589–600.

    CAS  PubMed  Google Scholar 

  92. DeBosch B, Treskov I, Lupu TS, Weinheimer C, Kovacs A, Courtois M, et al. Akt1 is ­required for physiological cardiac growth. Circulation. 2006;113(17):2097–104.

    CAS  PubMed  Google Scholar 

  93. Wilkins BJ, Dai YS, Bueno OF, Parsons SA, Xu J, Plank DM, et al. Calcineurin/NFAT coupling participates in pathological, but not physiological, cardiac hypertrophy. Circ Res. 2004;94(1):110–8.

    CAS  PubMed  Google Scholar 

  94. Konhilas JP, Watson PA, Maass A, Boucek DM, Horn T, Stauffer BL, et al. Exercise can prevent and reverse the severity of hypertrophic cardiomyopathy. Circ Res. 2006;98(4):540–8.

    CAS  PubMed  Google Scholar 

  95. Kemi OJ, Ceci M, Wisloff U, Grimaldi S, Gallo P, Smith GL, et al. Activation or inactivation of cardiac Akt/mTOR signaling diverges physiological from pathological hypertrophy. J Cell Physiol. 2008;214(2):316–21.

    CAS  PubMed  Google Scholar 

  96. Fadel PJ, Raven PB. Human investigations into the arterial and cardiopulmonary baroreflexes during exercise. Exp Physiol. 2012;97(1):39–50.

    PubMed Central  PubMed  Google Scholar 

  97. Thomas GD, Segal SS. Neural control of muscle blood flow during exercise. J Appl Physiol. 2004;97(2):731–8.

    CAS  PubMed  Google Scholar 

  98. Dinenno FA, Joyner MJ. Blunted sympathetic vasoconstriction in contracting skeletal muscle of healthy humans: is nitric oxide obligatory? J Physiol. 2003;553(Pt 1):281–92.

    PubMed Central  CAS  PubMed  Google Scholar 

  99. Buckwalter JB, Clifford PS. Autonomic control of skeletal muscle blood flow at the onset of exercise. The Am J Physiol. 1999;277(5 Pt 2):H1872–7.

    CAS  Google Scholar 

  100. Hellsten Y, Nyberg M, Jensen LG, Mortensen SP. Vasodilator interactions in skeletal muscle blood flow regulation. J Physiol. 2012;590(Pt 24):6297–305.

    PubMed Central  CAS  PubMed  Google Scholar 

  101. Nakamura M. Peripheral vascular remodeling in chronic heart failure: clinical relevance and new conceptualization of its mechanisms. J Card Fail. 1999;5(2):127–38.

    CAS  PubMed  Google Scholar 

  102. Barretto AC, Santos AC, Munhoz R, Rondon MU, Franco FG, Trombetta IC, et al. Increased muscle sympathetic nerve activity predicts mortality in heart failure patients. Int J Cardiol. 2009;135(3):302–7.

    PubMed  Google Scholar 

  103. Rowell LB. Neural control of muscle blood flow: importance during dynamic exercise. Clin Exp Pharmacol Physiol. 1997;24(2):117–25.

    CAS  PubMed  Google Scholar 

  104. Donald DE, Shepherd JT. Autonomic regulation of the peripheral circulation. Annu Rev Physiol. 1980;42:429–39.

    CAS  PubMed  Google Scholar 

  105. Hohimer AR, Hales JR, Rowell LB, Smith OA. Regional distribution of blood flow during mild dynamic leg exercise in the baboon. J Appl Physiol Respir Environ Exerc Physiol. 1983;55(4):1173–7.

    CAS  PubMed  Google Scholar 

  106. Rowell LB, Saltin B, Kiens B, Christensen NJ. Is peak quadriceps blood flow in humans even higher during exercise with hypoxemia? Am J Physiol. 1986;251(5 Pt 2):H1038–44.

    CAS  PubMed  Google Scholar 

  107. Hansen J, Sander M, Thomas GD. Metabolic modulation of sympathetic vasoconstriction in exercising skeletal muscle. Acta Physiol Scand. 2000;168(4):489–503.

    CAS  PubMed  Google Scholar 

  108. Williamson JW, Fadel PJ, Mitchell JH. New insights into central cardiovascular control ­during exercise in humans: a central command update. Exp Physiol. 2006;91(1):51–8.

    CAS  PubMed  Google Scholar 

  109. Joyner MJ. Baroreceptor function during exercise: resetting the record. Exp Physiol. 2006;91(1):27–36.

    PubMed  Google Scholar 

  110. Krieger EM, Brum PC, Negrao CE. Role of arterial baroreceptor function on cardiovascular adjustments to acute and chronic dynamic exercise. Biological research. 1998;31(3):273–9.

    CAS  PubMed  Google Scholar 

  111. Potts JT, Shi XR, Raven PB. Carotid baroreflex responsiveness during dynamic exercise in humans. Am J Physiol. 1993;265(6 Pt 2):H1928–38.

    CAS  PubMed  Google Scholar 

  112. Silva GJ, Brum PC, Negrao CE, Krieger EM. Acute and chronic effects of exercise on baroreflexes in spontaneously hypertensive rats. Hypertension. 1997;30(3 Pt 2):714–9.

    CAS  PubMed  Google Scholar 

  113. Brum PC, Da Silva GJ, Moreira ED, Ida F, Negrao CE, Krieger EM. Exercise training increases baroreceptor gain sensitivity in normal and hypertensive rats. Hypertension. 2000;36(6):1018–22.

    CAS  PubMed  Google Scholar 

  114. Hansen J, Thomas GD, Jacobsen TN, Victor RG. Muscle metaboreflex triggers parallel sympathetic activation in exercising and resting human skeletal muscle. Am J Physiol. 1994;266(6 Pt 2):H2508–14.

    CAS  PubMed  Google Scholar 

  115. Mark AL, Victor RG, Nerhed C, Wallin BG. Microneurographic studies of the mechanisms of sympathetic nerve responses to static exercise in humans. Circ Res. 1985;57(3):461–9.

    CAS  PubMed  Google Scholar 

  116. Victor RG, Seals DR, Mark AL. Differential control of heart rate and sympathetic nerve activity during dynamic exercise. Insight from intraneural recordings in humans. J Clin Invest. 1987;79(2):508–16.

    PubMed Central  CAS  PubMed  Google Scholar 

  117. Cornett JA, Herr MD, Gray KS, Smith MB, Yang QX, Sinoway LI. Ischemic exercise and the muscle metaboreflex. J Appl Physiol. 2000;89(4):1432–6.

    CAS  PubMed  Google Scholar 

  118. Nishiyasu T, Ueno H, Nishiyasu M, Tan N, Morimoto K, Morimoto A, et al. Relationship between mean arterial pressure and muscle cell pH during forearm ischaemia after sustained handgrip. Acta Physiol Scand. 1994;151(2):143–8.

    CAS  PubMed  Google Scholar 

  119. Sinoway L, Prophet S, Gorman I, Mosher T, Shenberger J, Dolecki M, et al. Muscle acidosis during static exercise is associated with calf vasoconstriction. J Appl Physiol. 1989;66(1):429–36.

    CAS  PubMed  Google Scholar 

  120. Victor RG, Rotto DM, Pryor SL, Kaufman MP. Stimulation of renal sympathetic activity by static contraction: evidence for mechanoreceptor-induced reflexes from skeletal muscle. Circ Res. 1989;64(3):592–9.

    CAS  PubMed  Google Scholar 

  121. Matsukawa K, Wall PT, Wilson LB, Mitchell JH. Reflex stimulation of cardiac sympathetic nerve activity during static muscle contraction in cats. Am J Physiol. 1994;267(2 Pt 2):H821–7.

    CAS  PubMed  Google Scholar 

  122. Adreani CM, Hill JM, Kaufman MP. Responses of group III and IV muscle afferents to dynamic exercise. J Appl Physiol. 1997;82(6):1811–7.

    CAS  PubMed  Google Scholar 

  123. Remensnyder JP, Mitchell JH, Sarnoff SJ. Functional sympatholysis during muscular activity. Observations on influence of carotid sinus on oxygen uptake. Circ Res. 1962;11:370–80.

    CAS  PubMed  Google Scholar 

  124. Saltin B, Mortensen SP. Inefficient functional sympatholysis is an overlooked cause of ­malperfusion in contracting skeletal muscle. J Physiol. 2012;590(Pt 24):6269–75.

    PubMed Central  CAS  PubMed  Google Scholar 

  125. Pancheva AV, Panchev VS, Pancheva MV. “Functional sympatholysis” in the present ­concept does not exist: arteriovenous pumping, supplied by capillary pumps, explains immediate ­exercise hyperemia. J Appl Physiol. 2013;114(3):428.

    PubMed  Google Scholar 

  126. Casey DP, Joyner MJ, Claus PL, Curry TB. Vasoconstrictor responsiveness during hyperbaric hyperoxia in contracting human muscle. J Appl Physiol. 2013;114(2):217–24.

    PubMed Central  CAS  PubMed  Google Scholar 

  127. Middlekauff HR, Nguyen AH, Negrao CE, Nitzsche EU, Hoh CK, Natterson BA, et al. Impact of acute mental stress on sympathetic nerve activity and regional blood flow in advanced heart failure: implications for ‘triggering’ adverse cardiac events. Circulation. 1997;96(6):1835–42.

    CAS  PubMed  Google Scholar 

  128. Cohn JN, Levine TB, Olivari MT, Garberg V, Lura D, Francis GS, et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med. 1984;311(13):819–23.

    CAS  PubMed  Google Scholar 

  129. Koba S, Gao Z, Xing J, Sinoway LI, Li J. Sympathetic responses to exercise in ­myocardial infarction rats: a role of central command. Am J Physiol Heart Circ Physiol. 2006;291(6):H2735–42.

    CAS  PubMed  Google Scholar 

  130. Alves MJ, Rondon MU, Santos AC, Dias RG, Barretto AC, Krieger EM, et al. Sympathetic nerve activity restrains reflex vasodilatation in heart failure. Clin Auton Res. 2007;17(6):364–9.

    PubMed  Google Scholar 

  131. Negrao CE, Hamilton MA, Fonarow GC, Hage A, Moriguchi JD, Middlekauff HR. Impai endothelium-mediated vasodilation is not the principal cause of vasoconstriction in heart failure. Am J Physiol Heart Circ Physiol. 2000;278(1):H168–74.

    CAS  PubMed  Google Scholar 

  132. Liu JL, Irvine S, Reid IA, Patel KP, Zucker IH. Chronic exercise reduces sympathetic nerve activity in rabbits with pacing-induced heart failure: A role for angiotensin II. Circulation. 2000;102(15):1854–62.

    CAS  PubMed  Google Scholar 

  133. Fraga R, Franco FG, Roveda F, de Matos LN, Braga AM, Rondon MU, et al. Exercise training reduces sympathetic nerve activity in heart failure patients treated with carvedilol. Eur J Heart Fail. 2007;9(6–7):630–6.

    CAS  PubMed  Google Scholar 

  134. De Matos LD, Gardenghi G, Rondon MU, Soufen HN, Tirone AP, Barretto AC, et al. Impact of 6 months of therapy with carvedilol on muscle sympathetic nerve activity in heart failure patients. J Card Fail. 2004;10(6):496–502.

    PubMed  Google Scholar 

  135. Antunes-Correa LM, Kanamura BY, Melo RC, Nobre TS, Ueno LM, Franco FG, et al. Exercise training improves neurovascular control and functional capacity in heart failure patients regardless of age. Eur J Prev Cardiol. 2012;19(4):822–9.

    PubMed  Google Scholar 

  136. Antunes-Correa LM, Melo RC, Nobre TS, Ueno LM, Franco FG, Braga AM, et al. Impact of gender on benefits of exercise training on sympathetic nerve activity and muscle blood flow in heart failure. Eur J Heart Fail. 2010;12(1):58–65.

    PubMed Central  PubMed  Google Scholar 

  137. Negrao CE, Irigoyen MC, Moreira ED, Brum PC, Freire PM, Krieger EM. Effect of exercise training on RSNA, baroreflex control, and blood pressure responsiveness. Am J Physiol. 1993;265(2 Pt 2):R365–70.

    CAS  PubMed  Google Scholar 

  138. Piepoli M, Clark AL, Volterrani M, Adamopoulos S, Sleight P, Coats AJ. Contribution of muscle afferents to the hemodynamic, autonomic, and ventilatory responses to exercise in patients with chronic heart failure: effects of physical training. Circulation. 1996;93(5):940–52.

    CAS  PubMed  Google Scholar 

  139. Wang HJ, Li YL, Gao L, Zucker IH, Wang W. Alteration in skeletal muscle afferents in rats with chronic heart failure. J Physiol. 2010;588(Pt 24):5033–47.

    PubMed Central  CAS  PubMed  Google Scholar 

  140. Smith SA, Mitchell JH, Naseem RH, Garry MG. Mechanoreflex mediates the exaggerated exercise pressor reflex in heart failure. Circulation. 2005;112(15):2293–300.

    PubMed  Google Scholar 

  141. Smith SA, Williams MA, Mitchell JH, Mammen PP, Garry MG. The capsaicin-sensitive afferent neuron in skeletal muscle is abnormal in heart failure. Circulation. 2005;111(16):2056–65.

    CAS  PubMed  Google Scholar 

  142. Carrington CA, Fisher JP, Davies MK, White MJ. Muscle afferent inputs to cardiovascular control during isometric exercise vary with muscle group in patients with chronic heart failure. Clin Sci. 2004;107(2):197–204.

    PubMed  Google Scholar 

  143. Sterns DA, Ettinger SM, Gray KS, Whisler SK, Mosher TJ, Smith MB, et al. Skeletal muscle metaboreceptor exercise responses are attenuated in heart failure. Circulation. 1991;84(5):2034–9.

    CAS  PubMed  Google Scholar 

  144. Ansorge EJ, Augustyniak RA, Perinot ML, Hammond RL, Kim JK, Sala-Mercado JA, et al. Altered muscle metaboreflex control of coronary blood flow and ventricular function in heart failure. Am J Physiol Heart Circ Physiol. 2005;288(3):H1381–8.

    CAS  PubMed  Google Scholar 

  145. Crisafulli A, Salis E, Tocco F, Melis F, Milia R, Pittau G, et al. Impaired central hemodynamic response and exaggerated vasoconstriction during muscle metaboreflex activation in heart failure patients. Am J Physiol Heart Circ Physiol. 2007;292(6):H2988–96.

    CAS  PubMed  Google Scholar 

  146. Murakami H, Liu JL, Zucker IH. Angiotensin II blockade [corrected] enhances baroreflex control of sympathetic outflow in heart failure. Hypertension. 1997;29(2):564–9.

    CAS  PubMed  Google Scholar 

  147. Dibner-Dunlap ME, Thames MD. Baroreflex control of renal sympathetic nerve activity is preserved in heart failure despite reduced arterial baroreceptor sensitivity. Circ Res. 1989;65(6):1526–35.

    CAS  PubMed  Google Scholar 

  148. Grassi G, Seravalle G, Cattaneo BM, Lanfranchi A, Vailati S, Giannattasio C, et al. Sympathetic activation and loss of reflex sympathetic control in mild congestive heart failure. Circulation. 1995;92(11):3206–11.

    CAS  PubMed  Google Scholar 

  149. Ferguson DW, Berg WJ, Roach PJ, Oren RM, Mark AL. Effects of heart failure on baroreflex control of sympathetic neural activity. Am J Cardiol. 1992;69(5):523–31.

    CAS  PubMed  Google Scholar 

  150. La Rovere MT, Pinna GD, Maestri R, Robbi E, Caporotondi A, Guazzotti G, et al. Prognostic implications of baroreflex sensitivity in heart failure patients in the beta-blocking era. J Am Coll Cardiol. 2009;53(2):193–9.

    PubMed  Google Scholar 

  151. Hoyer D, Maestri R, La Rovere MT, Pinna GD. Autonomic response to cardiac dysfunction in chronic heart failure: a risk predictor based on autonomic information flow. Pacing and clinical electrophysiology: PACE. 2008;31(2):214–20.

    PubMed  Google Scholar 

  152. La Rovere MT Bersano C Gnemmi M Specchia G Schwartz PJ. Exercise-induced increase in baroreflex sensitivity predicts improved prognosis after myocardial infarction. Circulation. 2002;106(8):945–9.

    PubMed  Google Scholar 

  153. Patel KP, Salgado HC, Liu X, Zheng H. Exercise training normalizes the blunted central component of the baroreflex in rats with heart failure: role of the PVN. Am J Physiol Heart Circ Physiol. 2013;305(2):H173–81.

    PubMed Central  CAS  PubMed  Google Scholar 

  154. Rondon E, Brasileiro-Santos MS, Moreira ED, Rondon MU, Mattos KC, Coelho MA, et al. Exercise training improves aortic depressor nerve sensitivity in rats with ischemia-induced heart failure. Am J Physiol Heart Circ Physiol. 2006;291(6):H2801–6.

    CAS  PubMed  Google Scholar 

  155. Gademan MG, Swenne CA, Verwey HF, van der Laarse A, Maan AC, van de Vooren H, et al. Effect of exercise training on autonomic derangement and neurohumoral activation in chronic heart failure. J Card Fail. 2007;13(4):294–303.

    PubMed  Google Scholar 

  156. Mousa TM, Liu D, Cornish KG, Zucker IH. Exercise training enhances baroreflex sensitivity by an angiotensin II-dependent mechanism in chronic heart failure. J Appl Physiol. 2008;104(3):616–24.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Chakur Brum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Voltarelli, V., Jannig, P., Costa, D., Bozi, L., Júnior, C., Brum, P. (2015). The Cardiovascular Adrenergic System and Physical Exercise. In: Lymperopoulos, A. (eds) The Cardiovascular Adrenergic System. Springer, Cham. https://doi.org/10.1007/978-3-319-13680-6_5

Download citation

Publish with us

Policies and ethics