Skip to main content
Book cover

Phenomics pp 15–32Cite as

Experimental Designs for Next Generation Phenotyping

  • Chapter
  • First Online:
  • 1264 Accesses

Abstract

The increase in popularity of high-throughput genotyping in breeding programs is associated with recent advances in DNA sequencing technology and large decreases in genotyping costs. However, the limits of using genotyping for making predictions and, therefore, identifying potential candidate materials for selection thus reside in the quality of the phenotyping. High-throughput phenotyping technologies have been developed and implemented prior to planting and during cultivation. Much of this phenotyping has occurred in relatively small and restricted environments where many influential factors in the quality of phenotype can be adequately controlled. In many situations, however, it is necessary to perform phenotyping under field conditions. In this case, depending on the characteristic of interest to be collected, the influence of factors difficult to be controlled in such adverse conditions can cause the need for use of alternatives that can ensure a sufficiently accurate and precise phenotyping. In this sense, the science of Statistics contributes with an important role, either in the use of traditional basic concepts, in the planning of controlled experiments, or in modeling and developing appropriate analyzes. This chapter will discuss several experimental designs that can potentially be used for phenotyping under variable conditions, describing their various characteristics. Also it will address on topics related to the problem of obtaining accurate and precise phenotypic information, and the role of statistics in the success of this venture so fashionable today.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Araus JL, Cairns JE (2014) Field high-throughput phenotyping: the new crop breeding frontier. Trends Plant Sci 19(1):51–61

    Google Scholar 

  • Auer PL, Doerge RW (2010) Statistical design and analysis of RNA sequencing data. Genetics 185:405–416

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Aulchenko YS, Koning D, Haley C (2007) Genomewide rapid association using mixed model and regression: a fast and simple method for genomewide pedigree-based quantitative trait loci association analysis. Genetics 177:577–585

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Banzato DA, Kronka SN (1989) Experimentação agrícola. FUNEP, Jaboticabal, 247 pp

    Google Scholar 

  • Barbin D (2003) Planejamento e análise estatística de experimentos agronômicos. Midas, Arapongas, 208 pp

    Google Scholar 

  • Cabrera-Bosquet LJ, Crossa J, von Zitzewitz MD, Serret J, Araus L (2012) High-throughput phenotyping and genomic selection: the frontiers of crop breeding converge. J Integr Plant Biol 54:312–320

    Article  PubMed  Google Scholar 

  • Cobb JN, Declerck G, Greenbrg A, Clark R, McCouch S (2013) Next-generation phenotyping: requirements and strategies for enhancing our understanding of genotype-phenotype relationships and its relevance to crop improvement. Theor Appl Genet 126:867–887

    Article  PubMed Central  PubMed  Google Scholar 

  • Cochran WG, Cox GM (1992) Experimental designs, 2nd edn. Wiley, New York, 611 pp

    Google Scholar 

  • Cox DR (1958) Planning of experiments. Wiley, New York, 308 pp

    Google Scholar 

  • Crossa J, Burgueño J, Cornelius PL, McLaren G, Trethowan R et al (2006) Modeling genotype·environment interaction using additive genetic covariances of relatives for predicting breeding values of wheat genotypes. Crop Sci 46:1722–1733

    Article  Google Scholar 

  • Faraway JJ (2005) Linear models with R. Chapman & Hall/CRC, New York, 229 pp

    Google Scholar 

  • Federer WT (1956) Augmented (hoonuiaku) designs. Hawaian Planters’ Rec 55:191–208 (Aica)

    Google Scholar 

  • Federer WT, Reynolds M, Crossa J (2001) Combining results from augmented designs over sites. Agron J 93:389–395

    Article  Google Scholar 

  • Fiorani F, Schurr U (2013) Future scenarios for plant phenotyping. Ann Rev Plant Biol 64:267–291

    Article  CAS  Google Scholar 

  • Fisher RA (1926) The arrangement of field experiments. J Ministry Agric Great Brit 33:503–513

    Google Scholar 

  • Fisher RA (1935) The design of experiments, 2nd edn. Oliver & Boyd, Edinburgh

    Google Scholar 

  • Gilmour AR (2000) Post blocking gone too far! Recovery of information and spatial analysis in field experiments. Biometrics 56:944–946

    Article  CAS  PubMed  Google Scholar 

  • Hinkelmann K, Kempthorne O (1994) Design and analysis of experiments—volume I: introduction to experimental design. Wiley, New York, 495 pp

    Google Scholar 

  • Hinkelmann K, Kempthorne O (2005) Design and analysis of experiments—volume II: advanced experimental design. Wiley, New York 780 pp

    Google Scholar 

  • Lado B, Matus I, Rodriguez A, Inostroza L, Poland J, Belzile F, del Pozo A, Quincke M, Castro M, von Zitzewitz J (2013) Increased genomic prediction accuracy in wheat breeding through spatial adjustment of field trial data. G3 3:2105–2114

    Article  PubMed Central  PubMed  Google Scholar 

  • Leite MSO, Peternelli LA, Barbosa MHP (2006) Effects of plot size on the estimation of genetic parameters in sugarcane families. Crop Breed Appl Biotech 6(1):40–46

    Article  Google Scholar 

  • Leite MSO, Peternelli LA, Barbosa MHP, Cecon PR, Cruz CD (2009) Sample size for full-sib family evaluation in sugarcane. Pesquisa Agropecuária Bras 44:562–1574

    Article  Google Scholar 

  • Masuka BJ, Araus L, Das B, Sonder K, Cairns JE (2012) Phenotyping for abiotic stress tolerance in maize. J Integr Plant Biol 54:238–249

    Article  CAS  PubMed  Google Scholar 

  • Papadakis J (1984) Advances in the analysis of field experiments. Communicationes dÁcademie dÁthenes 59:326–342

    Google Scholar 

  • Patterson HD, Williams ER (1976) A new class of resolvable block designs. Biometrika 63:83–92

    Article  Google Scholar 

  • Peternelli LA, Souza EFM, Barbosa MHP, Carvalho MP (2009) Delineamentos aumentados no melhoramento de plantas em condições de restrições de recursos. Ciência Rural 39:2425–2430 (UFSM-Impresso)

    Article  Google Scholar 

  • Peternelli LA, Resende MDV, Mendes TO (2012) Experimentação e análise estatística em cana-de-açúcar. In: Santos F, Borém A, Caldas C (eds) Cana-de-açúcar: bioenergia, açúcar e etanol—Tecnologias e perspectivas, 2nd edn. Editora Folha de Viçosa Ltda., Viçosa, pp 333–353

    Google Scholar 

  • Poorter H, Fiorani F, Stitt M, Schurr U, Finck A, Gibon Y, Usadel B, Munns R, Atkin OK, Tardieu F, Pons TL (2012) The art of growing plants for experimental purposes: a practical guide for the plant biologist. Funct Plant Biol 39:821–838

    Article  Google Scholar 

  • Ramalho MAP, Ferreira DF, Oliveira AC (2005) Experimentação em genética e melhoramento de plantas. UFLA, Lavras, 300 pp

    Google Scholar 

  • Resende MDV (2002) Genética biométrica e estatística no melhoramento de plantas perenes. Embrapa Informação Tecnológica, Brasília, 975 pp

    Google Scholar 

  • Resende MDV (2007) Matemática e estatística na análise de experimentos e no melhoramento genético. Embrapa Florestas, Colombo, 560 pp

    Google Scholar 

  • Resende MDV, Barbosa MHP (2005) Melhoramento genético de plantas de propagação assexuada. Embrapa Florestas, Colombo, 130 pp

    Google Scholar 

  • Scott RA, Milliken GA (1993) A SAS program for analyzing augmented randomized complete-block designs. Crop Sci 33:865–867

    Article  Google Scholar 

  • Silva MAG, Peternelli LA, Nascimento M, da Silva FL (2013) Modelos mistos na seleção de famílias de cana-de-açúcar aparentadas sob o enfoque clássico e bayesiano. Revista Brasileira de Biometria 31:1–12

    Google Scholar 

  • Souza EFM, Peternelli LA, Barbosa MHP (2006) Designs and model effects definitions in the initial stage of a plant breeding program. Pesq Agropec Bras 41(3):369–375 (Brasília)

    Article  Google Scholar 

  • Steel RGD, Torrie JH, Dickey DA (1997) Principles and procedures of statistics: a biometrical approach, 3rd edn. McGraw-Hill Companies, New York, 666 pp

    Google Scholar 

  • Storck L, Garcia DC, Lopes SJ, Estefanel V (2000) Experimentação vegetal. In: Santa Maria RS (ed) da Universidade Federal de Santa Maria, 199 pp

    Google Scholar 

  • Williams ER, Matheson AC (1994) Experimental design and analysis for use in tree improvement. CSIRO Information Services, East Melbourne, 174 pp

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Alexandre Peternelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Peternelli, L.A., de Resende, M.D.V. (2015). Experimental Designs for Next Generation Phenotyping. In: Fritsche-Neto, R., Borém, A. (eds) Phenomics. Springer, Cham. https://doi.org/10.1007/978-3-319-13677-6_2

Download citation

Publish with us

Policies and ethics