Ontology-Based Model for Food Transformation Processes - Application to Winemaking

  • Aunur-Rofiq Muljarto
  • Jean-Michel Salmon
  • Pascal Neveu
  • Brigitte Charnomordic
  • Patrice Buche
Part of the Communications in Computer and Information Science book series (CCIS, volume 478)


This paper describes an ontology for modeling any food processing chain. It is intended for data and knowledge integration and sharing. The proposed ontology (Onto-FP) is built based on four main concepts: Product, Operation, Attribute and Observation. This ontology is able to represent food product transformations as well as temporal sequence of food processes. The Onto-FP can be easy integrated to other domains due to its consistencies with DOLCE ontology. We detail an application in the domain of winemaking and prove that it can be easy queried to answer questions related to data classification, food process itineraries and incomplete data identification.


ontology-based model data integration food processing winemaking 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lehmann, R.J., Reiche, R., Schiefer, G.: Future internet and the agri-food sector: State-of-the-art in literature and research. Computers and Electronics in Agriculture 89, 158–174 (2012)CrossRefGoogle Scholar
  2. 2.
    Gardner, S.P.: Ontologies and semantic data integration. Drug Discovery Today 10, 1001–1007 (2005)CrossRefGoogle Scholar
  3. 3.
    Chungoora, N., Young, R.I., Gunendran, G., Palmer, C., Usman, Z., Anjum, N.A., Cutting-Decelle, A.F., Harding, J.A., Case, K.: A model-driven ontology approach for manufacturing system interoperability and knowledge sharing. Computers in Industry 64, 392–401 (2013)CrossRefGoogle Scholar
  4. 4.
    Graham, J.W.: Missing data analysis: making it work in the real world. Annual Review of Psychology 60, 549–576 (2009)CrossRefGoogle Scholar
  5. 5.
    Zhang, J., Hunter, A., Zhou, Y.: A logic-reasoning based system to harness bioprocess experimental data and knowledge for design. Biochemical Engineering Journal 74, 127–135 (2013)CrossRefGoogle Scholar
  6. 6.
    Haverkort, A.J., Top, J.L., Verdenius, F.: Organizing Data in Arable Farming: Towards an Ontology of Processing Potato. Potato Research 49, 177–201 (2007)CrossRefGoogle Scholar
  7. 7.
    Zheng, Y.L., He, Q.Y., Qian, P., Li, Z.: Construction of the Ontology-Based Agricultural Knowledge Management System. Journal of Integrative Agriculture 11, 700–709 (2012)CrossRefGoogle Scholar
  8. 8.
    Snae, C., Bruckner, M.: FOODS: A Food-Oriented Ontology-Driven System. In: 2nd IEEE International Conference on Digital Ecosystems and Technologies, pp. 168–176. Ieee (2008)Google Scholar
  9. 9.
    Graça, J., Mourao, M., Anunciação, O., Monteiro, P., Pinto, H.S., Loureiro, V.: Ontology building process: the wine domain. In: EVITA 2005 Proceedings, Vila Real, (i) (2005)Google Scholar
  10. 10.
    He, Q.Y., Zheng, Y.L., Xu, J.N.: Constructing the Ontology for Modeling the Fish Production in Pearl River Basin. Journal of Integrative Agriculture 11, 760–768 (2012)CrossRefGoogle Scholar
  11. 11.
    Pizzuti, T., Mirabelli, G., Sanz-Bobi, M.A., Goméz-Gonzaléz, F.: Food Track & Trace ontology for helping the food traceability control. Journal of Food Engineering 120, 17–30 (2014)CrossRefGoogle Scholar
  12. 12.
    Salampasis, M., Tektonidis, D., Kalogianni, E.P.: TraceALL: a semantic web framework for food traceability systems. Journal of Systems and Information Technology 14, 302–317 (2012)CrossRefGoogle Scholar
  13. 13.
    Morbach, J., Yang, A., Marquardt, W.: OntoCAPEA large-scale ontology for chemical process engineering. Engineering Applications of Artificial Intelligence 20, 147–161 (2007)CrossRefGoogle Scholar
  14. 14.
    Theißen, M., Hai, R., Marquardt, W.: A framework for work process modeling in the chemical industries. Computers & Chemical Engineering 35, 679–691 (2011)CrossRefGoogle Scholar
  15. 15.
    Pinto, H.S., Martins, J.A.P.: Ontologies: How can They be Built? Knowledge and Information Systems 6, 441–464 (2004)CrossRefGoogle Scholar
  16. 16.
    Allen, J.F., Ferguson, G.: Actions and Events in Interval Temporal Logic. Journal of Logic and Computation 4, 531–579 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Hobbs, J.R., Pan, F.: An ontology of time for the semantic web. ACM Transactions on Asian Language Information Processing 3, 66–85 (2004)CrossRefGoogle Scholar
  18. 18.
    Batres, R., West, M., Leal, D., Price, D., Masaki, K., Shimada, Y., Fuchino, T., Naka, Y.: An upper ontology based on ISO 15926. Computers & Chemical Engineering 31, 519–534 (2007)CrossRefGoogle Scholar
  19. 19.
    Mascardi, V., Cordì, V., Rosso, P.: A comparison of upper ontologies. In: WOA Conference, pp. 55–64 (2007)Google Scholar
  20. 20.
    Gangemi, A., Guarino, N., Masolo, C., Oltramari, A., Schneider, L.: Sweetening ontologies with DOLCE. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS (LNAI), vol. 2473, pp. 166–181. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  21. 21.
    Cismondi, F., Fialho, A.S., Vieira, S.M., Reti, S.R., Sousa, J.A.M.C., Finkelstein, S.N.: Missing data in medical databases: impute, delete or classify? Artificial Intelligence in Medicine 58, 63–72 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Aunur-Rofiq Muljarto
    • 1
    • 4
  • Jean-Michel Salmon
    • 2
  • Pascal Neveu
    • 1
  • Brigitte Charnomordic
    • 1
  • Patrice Buche
    • 3
  1. 1.MISTEA Joint Research Unit, UMR729MontpellierFrance
  2. 2.Unite Expérimentale de Pech RougePech RougeFrance
  3. 3.IATE Joint Research Unit, UMR1208MontpellierFrance
  4. 4.Dept. of Agroindustrial TechnologyBrawijaya UniversityMalangIndonesia

Personalised recommendations