Advertisement

Approach for Instance-Based Ontology Alignment: Using Argument and Event Structures of Generative Lexicon

  • Abderrahmane Khiat
  • Moussa Benaissa
Part of the Communications in Computer and Information Science book series (CCIS, volume 478)

Abstract

Ontology alignment became a very important problem to ensure semantic interoperability for different sources of information heterogeneous and distributed. Instance-based ontology alignment represents a very promising technique to find semantic correspondences between entities of different ontologies when they contain a lot of instances. In this paper, we describe a new approach to manage ontologies that do not share common instances.This approach extracts the argument and event structures from a set of instances of the concept of the source ontology and compared them with other semantic features extracted from a set of instances of the concept of the target ontology using Generative Lexicon Theory. We show that it is theoretically powerful because it is based on linguistic semantics and useful in practice. We present the experimental results obtained by running our approach on Biblio test of Benchmark1 series of OAEI2 2011. The results show the good performance of our approach.

Keywords

Instance-Based Ontology Alignment Generative Lexicon Theory Ontology Matching Semantic Interoperability Semantic Web 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Euzenat, J., Shvaiko, P.: Ontology Alignment. Springer, Heidelberg (2013)Google Scholar
  2. 2.
    Ehrig, M.: Ontology Alignment: Bridging the Semantic Gap. Springer (2007)Google Scholar
  3. 3.
    Schopman, B., Wang, S., Isaac, A., Schlobach, S.: Instance-Based Ontology Alignment by Instance Enrichment. Springer, Vrije Universiteit Amsterdam, Netherlands (2012)Google Scholar
  4. 4.
    Rahm, E.: Towards large-scale schema and ontology Alignment. ReCALL (2011)Google Scholar
  5. 5.
    Wang, Z., Zhang, X., Hou, L., Zhao, Y., Li, J., Qi, Y., Tang, J.: Rimom: a dynamic multistrategy ontology alignment framework. OAEI (2010)Google Scholar
  6. 6.
    Li, J., Tang, J., Li, Y., Luo, Q.: Rimom: a dynamic multistrategy ontology alignment framework. IEEE Trans. Knowl. (2009)Google Scholar
  7. 7.
    Bouquet, P., Euzenat, J., Franconi, E., Serafini, L., Stamou, G., Tessaris, S.: Specification of a common framework for characterizing alignment (2004)Google Scholar
  8. 8.
    Maedche, A., Motik, B., Silva, N., Volz, R.: Mafra – A mapping framework for distributed ontologies. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS (LNAI), vol. 2473, pp. 235–250. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Doan, A., Madhavan, J., Domingos, P., Halevy, A.: Ontology Alignment: a machine learning approach. Springer, Berlin (2004)Google Scholar
  10. 10.
    Stumme, G., Maedche, A.: Fca-merge: bottom-up merging of ontologies. In: Proceedings of the 17th International Conference on Artificial Intelligence (IJCAI 2001), Seattle (2001)Google Scholar
  11. 11.
    Zaiss, K.S.: Instance-based ontology Alignment and the evaluation of Alignment systems. Ph.D. thesis, Heinrich Heine Universität Düsseldorf (2010)Google Scholar
  12. 12.
    Todorov, K., Geibel, P., Kühnberger, K.-U.: Mining concept similarities for heterogeneous ontologies. In: Perner, P. (ed.) ICDM 2010. LNCS (LNAI), vol. 6171, pp. 86–100. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Tellier, I.: Introduction au TALN et à l’ingénierie linguistique (2012)Google Scholar
  14. 14.
    Pustejovsky, J., Boguraev, B.: Lexical Knowledge Representation and Natural Language Processing. In: Artificial Intelligence (1993)Google Scholar
  15. 15.
    Tran, Q., Ichise, R., Ho, B.: Cluster-based Similarity Aggregation for Ontology Matching (2011)Google Scholar
  16. 16.
    Pustejovsky, J.: The Generative Lexicon. MIT Press, Cambridge (1996)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Abderrahmane Khiat
    • 1
  • Moussa Benaissa
    • 1
  1. 1.LITIO LabUniversity of OranOranAlgeria

Personalised recommendations