Skip to main content

Pendulum Position Based Fuzzy Regulator of the Furuta Pendulum – A Stable Closed-Loop System Design Approach

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8857))

Abstract

This paper reports the design of a Mamdani type fuzzy controller to solve the regulation problem of a Furuta pendulum. The fuzzy rule-base is designed following the fuzzy Lyapunov synthesis, allowing to guarantee stability of the closed-loop system equilibrium point, minimizing heuristics in the fuzzy controller design stage. An important result of this paper is that the dynamic model of the Furuta pendulum it is not necessary in the design process and only angular position of the pendulum is available for measurements.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrievsky, B.: Global stabilization of the unstable reaction-wheel pendulum. Automation and Remote Control 72, 1981–1993 (2011)

    Article  MATH  Google Scholar 

  2. Hernández, V.M.: A combined sliding mode-generalized pi control scheme for swinging up and balancing the inertia wheel pendulum. Asian Journal of Control 5, 620–625 (2003)

    Article  Google Scholar 

  3. Qaiser, N., Iqbal, N., Hussain, A., Qaiser, N.: Stabilization of non-linear inertia wheel pendulum system using a new dynamic surface control based technique, pp. 1–6 (2006)

    Google Scholar 

  4. Qaiser, N., Iqbal, N., Hussain, A., Qaiser, N.: Exponential stabilization of the inertia wheel pendulum using dynamic surface control. Journal of Circuits, Systems and Computers 16, 81–92 (2007)

    Article  Google Scholar 

  5. Ng, W.M., Chang, D.E., Song, S.H.: Four representative applications of the energy shaping method for controlled lagrangian systems. Journal of Electrical Engineering and Technology 8, 1579–1589 (2013)

    Article  Google Scholar 

  6. Andary, S., Chemori, A., Krut, S.: Control of the underactuated inertia wheel inverted pendulum for stable limit cycle generation. Advanced Robotics 23, 1999–2014 (2009)

    Article  Google Scholar 

  7. Ye, H., Wang, H., Wang, H.: Stabilization of a pvtol aircraft and an inertia wheel pendulum using saturation technique. IEEE Transactions on Control Systems Technology 15, 1143–1150 (2007)

    Article  Google Scholar 

  8. Martinez-Soto, R., Rodriguez, A., Castillo, O., Aguilar, L.T.: Gain optimization for inertia wheel pendulum stabilization using particle swarm optimization and genetic algorithms. International Journal of Innovative Computing, Information and Control 8, 4421–4430 (2012)

    Google Scholar 

  9. Castillo, O., Aguilar, L., Cazarez, N., Cardenas, S.: Systematic design of a stable type-2 fuzzy logic controller. Applied Soft Computing 8, 1274–1279 (2008)

    Article  Google Scholar 

  10. Cazarez-Castro, N.R., Aguilar, L.T., Castillo, O.: Fuzzy logic control with genetic membership function parameters optimization for the output regulation of a servomechanism with nonlinear backlash. Expert Systems with Applications 37, 4368–4378 (2010)

    Article  Google Scholar 

  11. Furuta, K., Yamakita, M., Kobayashi, S.: Swing up control of inverted pendulum. In: Proceedings of the 1991 International Conference on Industrial Electronics, Control and Instrumentation, IECON 1991, vol. 3, pp. 2193–2198 (1991)

    Google Scholar 

  12. Mamdani, E.H., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies 7, 1–13 (1975)

    Article  MATH  Google Scholar 

  13. Lyapunov, A.: The General Problem of the Stability of Motion. Phd, Univ. Kharkov (1892) (in Russian)

    Google Scholar 

  14. Khalil, H.K.: Nonlinear Systems. 3rd edn. Prentice Hall, EEUU (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Cazarez-Castro, N.R., Aguilar, L.T., Cardenas-Maciel, S.L., Goribar-Jimenez, C.A. (2014). Pendulum Position Based Fuzzy Regulator of the Furuta Pendulum – A Stable Closed-Loop System Design Approach. In: Gelbukh, A., Espinoza, F.C., Galicia-Haro, S.N. (eds) Nature-Inspired Computation and Machine Learning. MICAI 2014. Lecture Notes in Computer Science(), vol 8857. Springer, Cham. https://doi.org/10.1007/978-3-319-13650-9_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13650-9_37

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13649-3

  • Online ISBN: 978-3-319-13650-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics