Skip to main content

Reversal of Cirrhosis

  • Chapter
  • First Online:
Complications of Cirrhosis

Abstract

Cirrhosis is a major cause of morbidity and mortality worldwide. In contrast with the traditional view that cirrhosis is irreversible, clinical and experimental studies suggest that the removal of the causative agent can lead to reversibility of early stages of cirrhosis. Patients with advanced fibrosis or cirrhosis may also benefit from targeted therapies that favor fibrosis resolution and restoration of a normal liver architecture. Cirrhosis is a dynamic process characterized by the accumulation of extracellular matrix proteins that distort the hepatic architecture by forming a fibrous scar and the subsequent development of nodules of regenerating hepatocytes. Regression of advanced liver fibrosis is associated with reabsorption of fibrous scar and the disappearance of collagen-producing myofibroblasts. To develop therapies that favor cirrhosis resolution, it is essential to identify the main molecular mechanisms that mediate the removal of the fibrosis scar. Key players in this process are hepatic stellate cells, macrophages, metalloproteinases, and their inhibitors. This chapter summarizes the current evidence that cirrhosis is potentially reversible, the mechanisms leading to fibrosis progression and resolution and the potential targeted therapies for patients with advanced fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bataller R, Brenner DA. Liver fibrosis. J Clin Invest. 2005;115:209–18.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Friedman SL. Liver fibrosis—from bench to bedside. J Hepatol. 2003;38 Suppl 1:S38–53.

    Article  PubMed  Google Scholar 

  3. Gines P, Cardenas A, Arroyo V, Rodes J. Management of cirrhosis and ascites. N Engl J Med. 2004;350:1646–54.

    Article  CAS  PubMed  Google Scholar 

  4. Klion FM, Schaffner F. Hemochromatosis following hepatitis in a patient with systemic iron overload. Arch Pathol. 1968;86:342–7.

    CAS  PubMed  Google Scholar 

  5. Albanis E, Friedman SL. Hepatic fibrosis. Pathogenesis and principles of therapy. Clin Liver Dis. 2001;5:315–34, v–vi.

    Article  CAS  PubMed  Google Scholar 

  6. Friedman SL, Roll FJ, Boyles J, Bissell DM. Hepatic lipocytes: the principal collagen-producing cells of normal rat liver. Proc Natl Acad Sci U S A. 1985;82:8681–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Geerts A. History, heterogeneity, developmental biology, and functions of quiescent hepatic stellate cells. Semin Liver Dis. 2001;21:311–35.

    Article  CAS  PubMed  Google Scholar 

  8. Ramadori G, Saile B. Portal tract fibrogenesis in the liver. Lab Invest. 2004;84:153–9.

    Article  PubMed  Google Scholar 

  9. Forbes SJ, Russo FP, Rey V, Burra P, Rugge M, Wright NA, Alison MR. A significant proportion of myofibroblasts are of bone marrow origin in human liver fibrosis. Gastroenterology. 2004;126:955–63.

    Article  PubMed  Google Scholar 

  10. Bataller R, North KE, Brenner DA. Genetic polymorphisms and the progression of liver fibrosis: a critical appraisal. Hepatology. 2003;37:493–503.

    Article  CAS  PubMed  Google Scholar 

  11. Hammel P, Couvelard A, O'Toole D, Ratouis A, Sauvanet A, Flejou JF, Degott C, et al. Regression of liver fibrosis after biliary drainage in patients with chronic pancreatitis and stenosis of the common bile duct. N Engl J Med. 2001;344:418–23.

    Article  CAS  PubMed  Google Scholar 

  12. Bataller R, Brenner DA. Hepatic stellate cells as a target for the treatment of liver fibrosis. Semin Liver Dis. 2001;21:437–51.

    Article  CAS  PubMed  Google Scholar 

  13. Benyon RC, Iredale JP. Is liver fibrosis reversible? Gut 2000;46:443–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Arthur MJ. Fibrogenesis II. Metalloproteinases and their inhibitors in liver fibrosis. Am J Physiol Gastrointest Liver Physiol. 2000;279:G245–9.

    CAS  PubMed  Google Scholar 

  15. Gabele E, Brenner DA, Rippe RA. Liver fibrosis: signals leading to the amplification of the fibrogenic hepatic stellate cell. Front Biosci. 2003;8:d69–77.

    Article  CAS  PubMed  Google Scholar 

  16. Milani S, Herbst H, Schuppan D, Kim KY, Riecken EO, Stein H. Procollagen expression by nonparenchymal rat liver cells in experimental biliary fibrosis. Gastroenterology. 1990;98:175–84.

    CAS  PubMed  Google Scholar 

  17. Kinnman N, Housset C. Peribiliary myofibroblasts in biliary type liver fibrosis. Front Biosci. 2002;7:d496–503.

    Article  CAS  PubMed  Google Scholar 

  18. Suskind DL, Muench MO. Searching for common stem cells of the hepatic and hematopoietic systems in the human fetal liver: CD34 + cytokeratin 7/8 + cells express markers for stellate cells. J Hepatol. 2004;40:261–8.

    Article  CAS  PubMed  Google Scholar 

  19. Kmiec Z. Cooperation of liver cells in health and disease. Adv Anat Embryol Cell Biol. 2001;161:Iii–xiii, 1–151.

    CAS  PubMed  Google Scholar 

  20. Canbay A, Friedman S, Gores GJ. Apoptosis: the nexus of liver injury and fibrosis. Hepatology 2004;39:273–8.

    Article  PubMed  Google Scholar 

  21. Casini A, Ceni E, Salzano R, Biondi P, Parola M, Galli A, Foschi M, et al. Neutrophil-derived superoxide anion induces lipid peroxidation and stimulates collagen synthesis in human hepatic stellate cells: role of nitric oxide. Hepatology. 1997;25:361–7.

    Article  CAS  PubMed  Google Scholar 

  22. Vinas O, Bataller R, Sancho-Bru P, Gines P, Berenguer C, Enrich C, Nicolas JM, et al. Human hepatic stellate cells show features of antigen-presenting cells and stimulate lymphocyte proliferation. Hepatology. 2003;38:919–29.

    Article  CAS  PubMed  Google Scholar 

  23. Maher JJ. Interactions between hepatic stellate cells and the immune system. Semin Liver Dis. 2001;21:417–26.

    Article  CAS  PubMed  Google Scholar 

  24. Shi Z, Wakil AE, Rockey DC. Strain-specific differences in mouse hepatic wound healing are mediated by divergent T helper cytokine responses. Proc Natl Acad Sci U S A. 1997;94:10663–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Naito M, Hasegawa G, Ebe Y, Yamamoto T. Differentiation and function of Kupffer cells. Med Electron Microsc. 2004;37:16–28.

    Article  CAS  PubMed  Google Scholar 

  26. Gressner AM, Weiskirchen R, Breitkopf K, Dooley S. Roles of TGF-beta in hepatic fibrosis. Front Biosci. 2002;7:d793–807.

    Article  CAS  PubMed  Google Scholar 

  27. Olaso E, Ikeda K, Eng FJ, Xu L, Wang LH, Lin HC, Friedman SL. DDR2 receptor promotes MMP-2-mediated proliferation and invasion by hepatic stellate cells. J Clin Invest. 2001;108:1369–78.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Roskams T, Baptista A, Bianchi L, Burt A, Callea F, Denk H, De Groote J, et al. Histopathology of portal hypertension: a practical guideline. Histopathology. 2003;42:2–13.

    Article  CAS  PubMed  Google Scholar 

  29. Sherlock S, Dooley J. Diseases of the liver and biliary system. Blackwell Science Ltd; Hoboken, NJ 2002.

    Google Scholar 

  30. Nevens F, Staessen D, Sciot R, Damme Van B, Desmet V, Fevery J, De Groote J, et al. Clinical aspects of incomplete septal cirrhosis in comparison with macronodular cirrhosis. Gastroenterology. 1994;106:459–63.

    CAS  PubMed  Google Scholar 

  31. Anthony PP, Ishak KG, Nayak NC, Poulsen HE, Scheuer PJ, Sobin LH. The morphology of cirrhosis. Recommendations on definition, nomenclature, and classification by a working group sponsored by the World Health Organization. J Clin Pathol. 1978;31:395–414.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Goldblatt PJ, Gunning WT 3rd. Ultrastructure of the liver and biliary tract in health and disease. Ann Clin Lab Sci. 1984;14:159–67.

    CAS  PubMed  Google Scholar 

  33. Wanless IR. Micronodular transformation (nodular regenerative hyperplasia) of the liver: a report of 64 cases among 2500 autopsies and a new classification of benign hepatocellular nodules. Hepatology. 1990;11:787–97.

    Article  CAS  PubMed  Google Scholar 

  34. Huet PM, Pomier-Layrargues G, Villeneuve JP, Varin F, Viallet A. Intrahepatic circulation in liver disease. Semin Liver Dis. 1986;6:277–86.

    Article  CAS  PubMed  Google Scholar 

  35. Oikawa H, Masuda T, Sato S, Yashima A, Suzuki K, Sato S, Satodate R. Changes in lymph vessels and portal veins in the portal tract of patients with idiopathic portal hypertension: a morphometric study. Hepatology. 1998;27:1607–10.

    Article  CAS  PubMed  Google Scholar 

  36. Malmqvist U. Effects of long-term portal hypertension on structure, active force and content of contractile and structural proteins in smooth muscle of the rat portal vein. Acta Physiol Scand. 1994;150:171–179.

    Article  CAS  PubMed  Google Scholar 

  37. Rosmorduc O, Housset C. Hypoxia: a link between fibrogenesis, angiogenesis, and carcinogenesis in liver disease. Semin Liver Dis. 2010;30:258–70.

    Article  CAS  PubMed  Google Scholar 

  38. Cannito S, Paternostro C, Busletta C, Bocca C, Colombatto S, Miglietta A, Novo E, et al. Hypoxia, hypoxia-inducible factors and fibrogenesis in chronic liver diseases. Histol Histopathol. 2014;29:33–44.

    CAS  PubMed  Google Scholar 

  39. Groszmann RJ, Abraldes JG. Portal hypertension: from bedside to bench. J Clin Gastroenterol. 2005;39:S125–30.

    Article  PubMed  Google Scholar 

  40. Foutch PG, Sullivan JA, Gaines JA, Sanowski RA. Cutaneous vascular spiders in cirrhotic patients: correlation with hemorrhage from esophageal varices. Am J Gastroenterol. 1988;83:723–6.

    CAS  PubMed  Google Scholar 

  41. Deaciuc IV, Spitzer JJ. Hepatic sinusoidal endothelial cell in alcoholemia and endotoxemia. Alcohol Clin Exp Res. 1996;20:607–14.

    Article  CAS  PubMed  Google Scholar 

  42. Baltzan MA, Olszewski J, Zervas N. Chronic porto-hepatic encephalopathy. J Neuropathol Exp Neurol. 1957;16:410–21.

    Article  CAS  PubMed  Google Scholar 

  43. Papper S. The hepatorenal syndrome. Clin Nephrol. 1975;4:41–4.

    CAS  PubMed  Google Scholar 

  44. Pinzani M, Vizzutti F. Fibrosis and cirrhosis reversibility: clinical features and implications. Clin Liver Dis. 2008;12:901–13, x.

    Article  PubMed  Google Scholar 

  45. Pares A, Caballeria J, Bruguera M, Torres M, Rodes J. Histological course of alcoholic hepatitis. Influence of abstinence, sex and extent of hepatic damage. J Hepatol. 1986;2:33–42.

    Article  CAS  PubMed  Google Scholar 

  46. Pessione F, Ramond MJ, Peters L, Pham BN, Batel P, Rueff B, Valla DC. Five-year survival predictive factors in patients with excessive alcohol intake and cirrhosis. Effect of alcoholic hepatitis, smoking and abstinence. Liver Int. 2003;23:45–53.

    Article  CAS  PubMed  Google Scholar 

  47. Bardou-Jacquet E, Legros L, Soro D, Latournerie M, Guillygomarc'h A, Le Lan C, Brissot P, et al. Effect of alcohol consumption on liver stiffness measured by transient elastography. World J Gastroenterol. 2013;19:516–22.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Poynard T, McHutchison J, Manns M, Trepo C, Lindsay K, Goodman Z, Ling MH, et al. Impact of pegylated interferon alfa-2b and ribavirin on liver fibrosis in patients with chronic hepatitis C. Gastroenterology. 2002;122:1303–13.

    Article  CAS  PubMed  Google Scholar 

  49. Lissen E, Clumeck N, Sola R, Mendes-Correa M, Montaner J, Nelson M, DePamphilis J, et al. Histological response to pegIFNalpha-2a (40KD) plus ribavirin in HIV-hepatitis C virus co-infection. AIDS. 2006;20:2175–81.

    Article  CAS  PubMed  Google Scholar 

  50. Heathcote EJ, Shiffman ML, Cooksley WG, Dusheiko GM, Lee SS, Balart L, Reindollar R, et al. Peginterferon alfa-2a in patients with chronic hepatitis C and cirrhosis. N Engl J Med. 2000;343:1673–80.

    Article  CAS  PubMed  Google Scholar 

  51. Camma C, Di Bona D, Schepis F, Heathcote EJ, Zeuzem S, Pockros PJ, Marcellin P, et al. Effect of peginterferon alfa-2a on liver histology in chronic hepatitis C: a meta-analysis of individual patient data. Hepatology. 2004;39:333–42.

    Article  CAS  PubMed  Google Scholar 

  52. Casado JL, Quereda C, Moreno A, Perez-Elias MJ, Marti-Belda P, Moreno S. Regression of liver fibrosis is progressive after sustained virological response to HCV therapy in patients with hepatitis C and HIV coinfection. J Viral Hepat. 2013;20:829–37.

    Article  CAS  PubMed  Google Scholar 

  53. Yuen MF, Seto WK, Chow DH, Tsui K, Wong DK, Ngai VW, Wong BC, et al. Long-term lamivudine therapy reduces the risk of long-term complications of chronic hepatitis B infection even in patients without advanced disease. Antivir Ther. 2007;12:1295–303.

    CAS  PubMed  Google Scholar 

  54. Kweon YO, Goodman ZD, Dienstag JL, Schiff ER, Brown NA, Burchardt E, Schoonhoven R, et al. Decreasing fibrogenesis: an immunohistochemical study of paired liver biopsies following lamivudine therapy for chronic hepatitis B. J Hepatol. 2001;35:749–55.

    Article  CAS  PubMed  Google Scholar 

  55. Xu B, Lin L, Xu G, Zhuang Y, Guo Q, Liu Y, Wang H, et al. Long-term lamivudine treatment achieves regression of advanced liver fibrosis/cirrhosis in patients with chronic hepatitis B. J Gastroenterol Hepatol. 2015;30(2):372–8.

    Google Scholar 

  56. Marcellin P, Gane E, Buti M, Afdhal N, Sievert W, Jacobson IM, Washington MK, et al. Regression of cirrhosis during treatment with tenofovir disoproxil fumarate for chronic hepatitis B: a 5-year open-label follow-up study. Lancet 2013;381:468–75.

    Article  CAS  PubMed  Google Scholar 

  57. Marcellin P, Heathcote EJ, Buti M, Gane E, de Man RA, Krastev Z, Germanidis G, et al. Tenofovir disoproxil fumarate versus adefovir dipivoxil for chronic hepatitis B. N Engl J Med. 2008;359:2442–55.

    Article  CAS  PubMed  Google Scholar 

  58. Poynard T, Munteanu M, Ngo Y, Moussalli J, Lebray P, Thabut D, Benhamou Y, et al. FibroTest is effective in patients with normal transaminases, when accuracy is standardized on fibrosis stage prevalence. J Viral Hepat. 2008;15:472–3; author reply 474.

    Article  CAS  PubMed  Google Scholar 

  59. Hadziyannis SJ, Tassopoulos NC, Heathcote EJ, Chang TT, Kitis G, Rizzetto M, Marcellin P, et al. Long-term therapy with adefovir dipivoxil for HBeAg-negative chronic hepatitis B for up to 5 years. Gastroenterology. 2006;131:1743–51.

    Article  CAS  PubMed  Google Scholar 

  60. Lin SM, Yu ML, Lee CM, Chien RN, Sheen IS, Chu CM, Liaw YF. Interferon therapy in HBeAg positive chronic hepatitis reduces progression to cirrhosis and hepatocellular carcinoma. J Hepatol. 2007;46:45–52.

    Article  CAS  PubMed  Google Scholar 

  61. Papatheodoridis GV, Petraki K, Cholongitas E, Kanta E, Ketikoglou I, Manesis EK. Impact of interferon-alpha therapy on liver fibrosis progression in patients with HBeAg-negative chronic hepatitis B. J Viral Hepat. 2005;12:199–206.

    Article  CAS  PubMed  Google Scholar 

  62. Ratnam D, Dev A, Nguyen T, Sundararajan V, Harley H, Cheng W, Lee A, et al. Efficacy and tolerability of pegylated interferon-alpha-2a in chronic hepatitis B: a multicenter clinical experience. J Gastroenterol Hepatol. 2012;27:1447–53.

    Article  CAS  PubMed  Google Scholar 

  63. Schiff E, Simsek H, Lee WM, Chao YC, Sette H Jr., Janssen HL, Han SH, et al. Efficacy and safety of entecavir in patients with chronic hepatitis B and advanced hepatic fibrosis or cirrhosis. Am J Gastroenterol. 2008;103:2776–83.

    Article  CAS  PubMed  Google Scholar 

  64. Kim MN, Kim SU, Kim BK, Park JY, Kim do Y, Ahn SH, Han KH. Long-term changes of liver stiffness values assessed using transient elastography in patients with chronic hepatitis B receiving entecavir. Liver Int. 2014;34:1216–23.

    Article  CAS  PubMed  Google Scholar 

  65. Farci P, Roskams T, Chessa L, Peddis G, Mazzoleni AP, Scioscia R, Serra G, et al. Long-term benefit of interferon alpha therapy of chronic hepatitis D: regression of advanced hepatic fibrosis. Gastroenterology. 2004;126:1740–49.

    Article  CAS  PubMed  Google Scholar 

  66. Samiullah S, Bikharam D, Nasreen. Treatment of chronic hepatitis delta virus with peg-interferon and factors that predict sustained viral response. World J Gastroenterol. 2012;18:5793–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Sikora SS, Srikanth G, Agrawal V, Gupta RK, Kumar A, Saxena R, Kapoor VK. Liver histology in benign biliary stricture: fibrosis to cirrhosis … and reversal? J Gastroenterol Hepatol. 2008;23:1879–84.

    Article  PubMed  Google Scholar 

  68. Corpechot C, Carrat F, Poujol-Robert A, Gaouar F, Wendum D, Chazouilleres O, Poupon R. Noninvasive elastography-based assessment of liver fibrosis progression and prognosis in primary biliary cirrhosis. Hepatology. 2012;56:198–208.

    Article  PubMed  Google Scholar 

  69. Mummadi RR, Kasturi KS, Chennareddygari S, Sood GK. Effect of bariatric surgery on nonalcoholic fatty liver disease: systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2008;6:1396–402.

    Article  PubMed  Google Scholar 

  70. Moretto M, Kupski C, da Silva VD, Padoin AV, Mottin CC. Effect of bariatric surgery on liver fibrosis. Obes Surg. 2012;22:1044–9.

    Article  PubMed  Google Scholar 

  71. Mattar SG, Velcu LM, Rabinovitz M, Demetris AJ, Krasinskas AM, Barinas-Mitchell E, Eid GM, et al. Surgically-induced weight loss significantly improves nonalcoholic fatty liver disease and the metabolic syndrome. Ann Surg. 2005;242:610–7 (discussion 618–20).

    PubMed Central  PubMed  Google Scholar 

  72. Dixon JB, Bhathal PS, Hughes NR, O'Brien PE. Nonalcoholic fatty liver disease: Improvement in liver histological analysis with weight loss. Hepatology. 2004;39:1647–54.

    Article  PubMed  Google Scholar 

  73. Ismail MH, Pinzani M. Reversal of hepatic fibrosis: pathophysiological basis of antifibrotic therapies. Hepat Med. 2011;3:69–80.

    Article  PubMed Central  PubMed  Google Scholar 

  74. Hayasaka A, Ilda S, Suzuki N, Kondo F, Miyazaki M, Yonemitsu H. Pyridinoline collagen cross-links in patients with chronic viral hepatitis and cirrhosis. J Hepatol. 1996;24:692–8.

    Article  CAS  PubMed  Google Scholar 

  75. Issa R, Zhou X, Constandinou CM, Fallowfield J, Millward-Sadler H, Gaca MD, Sands E, et al. Spontaneous recovery from micronodular cirrhosis: evidence for incomplete resolution associated with matrix cross-linking. Gastroenterology. 2004;126:1795–808.

    Article  CAS  PubMed  Google Scholar 

  76. Novo E, Marra F, Zamara E, Valfre di Bonzo L, Monitillo L, Cannito S, Petrai I, et al. Overexpression of Bcl-2 by activated human hepatic stellate cells: resistance to apoptosis as a mechanism of progressive hepatic fibrogenesis in humans. Gut. 2006;55:1174–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Ramachandran P, Iredale JP. Liver fibrosis: a bidirectional model of fibrogenesis and resolution. QJM 2012;105:813–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Pellicoro A, Ramachandran P, Iredale JP. Reversibility of liver fibrosis. Fibrogenesis Tissue Repair. 2012;5:S26.

    PubMed Central  PubMed  Google Scholar 

  79. Troeger JS, Mederacke I, Gwak GY, Dapito DH, Mu X, Hsu CC, Pradere JP, et al. Deactivation of hepatic stellate cells during liver fibrosis resolution in mice. Gastroenterology. 2012;143:1073–83, e1022.

    Article  CAS  PubMed  Google Scholar 

  80. Kisseleva T, Cong M, Paik Y, Scholten D, Jiang C, Benner C, Iwaisako K, et al. Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis. Proc Natl Acad Sci U S A. 2012;109:9448–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Iredale JP. Hepatic stellate cell behavior during resolution of liver injury. Semin Liver Dis. 2001;21:427–36.

    Article  CAS  PubMed  Google Scholar 

  82. Yoshiji H, Kuriyama S, Yoshii J, Ikenaka Y, Noguchi R, Nakatani T, Tsujinoue H, et al. Tissue inhibitor of metalloproteinases-1 attenuates spontaneous liver fibrosis resolution in the transgenic mouse. Hepatology. 2002;36:850–60.

    Article  CAS  PubMed  Google Scholar 

  83. Elsharkawy AM, Wright MC, Hay RT, Arthur MJ, Hughes T, Bahr MJ, Degitz K, et al. Persistent activation of nuclear factor-kappaB in cultured rat hepatic stellate cells involves the induction of potentially novel Rel-like factors and prolonged changes in the expression of IkappaB family proteins. Hepatology. 1999;30:761–9.

    Article  CAS  PubMed  Google Scholar 

  84. Krizhanovsky V, Yon M, Dickins RA, Hearn S, Simon J, Miething C, Yee H, et al. Senescence of activated stellate cells limits liver fibrosis. Cell 2008;134:657–67.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Yang L, Kwon J, Popov Y, Gajdos GB, Ordog T, Brekken RA, Mukhopadhyay D, et al. Vascular endothelial growth factor promotes fibrosis resolution and repair in mice. Gastroenterology. 2014;146:1339–50, e1331.

    Article  CAS  PubMed  Google Scholar 

  86. Fallowfield JA, Mizuno M, Kendall TJ, Constandinou CM, Benyon RC, Duffield JS, Iredale JP. Scar-associated macrophages are a major source of hepatic matrix metalloproteinase-13 and facilitate the resolution of murine hepatic fibrosis. J Immunol. 2007;178:5288–95.

    Article  CAS  PubMed  Google Scholar 

  87. Ramachandran P, Pellicoro A, Vernon MA, Boulter L, Aucott RL, Ali A, Hartland SN, et al. Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis. Proc Natl Acad Sci U S A. 2012;109:E3186–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Baeck C, Wei X, Bartneck M, Fech V, Heymann F, Gassler N, Hittatiya K, et al. Pharmacological inhibition of the chemokine C-C motif chemokine ligand 2 (monocyte chemoattractant protein 1) accelerates liver fibrosis regression by suppressing Ly-6C(+) macrophage infiltration in mice. Hepatology. 2014;59:1060–72.

    Article  CAS  PubMed  Google Scholar 

  89. Dufour JF, DeLellis R, Kaplan MM. Reversibility of hepatic fibrosis in autoimmune hepatitis. Ann Intern Med. 1997;127:981–5.

    Article  CAS  PubMed  Google Scholar 

  90. Mato JM, Camara J, Fernandez de Paz J, Caballeria L, Coll S, Caballero A, Garcia-Buey L, et al. S-adenosylmethionine in alcoholic liver cirrhosis: a randomized, placebo-controlled, double-blind, multicenter clinical trial. J Hepatol. 1999;30:1081–9.

    Article  CAS  PubMed  Google Scholar 

  91. Lieber CS, Weiss DG, Groszmann R, Paronetto F, Schenker S. I. Veterans affairs cooperative study of polyenylphosphatidylcholine in alcoholic liver disease: effects on drinking behavior by nurse/physician teams. Alcohol Clin Exp Res. 2003;27:1757–64.

    Article  CAS  PubMed  Google Scholar 

  92. Bataller R, Sancho-Bru P, Gines P, Brenner DA. Liver fibrogenesis: a new role for the renin-angiotensin system. Antioxid Redox Signal. 2005;7:1346–55.

    Article  CAS  PubMed  Google Scholar 

  93. Colmenero J, Bataller R, Sancho-Bru P, Dominguez M, Moreno M, Forns X, Bruguera M, et al. Effects of losartan on hepatic expression of nonphagocytic NADPH oxidase and fibrogenic genes in patients with chronic hepatitis C. Am J Physiol Gastrointest Liver Physiol. 2009;297:G726–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Di Bisceglie AM, Shiffman ML, Everson GT, Lindsay KL, Everhart JE, Wright EC, Lee WM, et al. Prolonged therapy of advanced chronic hepatitis C with low-dose peginterferon. N Engl J Med. 2008;359:2429–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Mahady SE, Webster AC, Walker S, Sanyal A, George J. The role of thiazolidinediones in non-alcoholic steatohepatitis—a systematic review and meta analysis. J Hepatol. 2011;55:1383–90.

    Article  CAS  PubMed  Google Scholar 

  96. Dima A, Marinescu AG, Dima AC. Non-alcoholic fatty liver disease and the statins treatment. Rom J Intern Med. 2012;50:19–25.

    CAS  PubMed  Google Scholar 

  97. George J, Roulot D, Koteliansky VE, Bissell DM. In vivo inhibition of rat stellate cell activation by soluble transforming growth factor beta type II receptor: a potential new therapy for hepatic fibrosis. Proc Natl Acad Sci U S A. 1999;96:12719–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Yoshiji H, Kuriyama S, Noguchi R, Ikenaka Y, Yoshii J, Yanase K, Namisaki T, et al. Amelioration of liver fibrogenesis by dual inhibition of PDGF and TGF-beta with a combination of imatinib mesylate and ACE inhibitor in rats. Int J Mol Med. 2006;17:899–904.

    CAS  PubMed  Google Scholar 

  99. Gonzalo T, Beljaars L, van de Bovenkamp M, Temming K, van Loenen AM, Reker-Smit C, Meijer DK, et al. Local inhibition of liver fibrosis by specific delivery of a platelet-derived growth factor kinase inhibitor to hepatic stellate cells. J Pharmacol Exp Ther. 2007;321:856–65.

    Article  CAS  PubMed  Google Scholar 

  100. Thompson K, Maltby J, Fallowfield J, McAulay M, Millward-Sadler H, Sheron N. Interleukin-10 expression and function in experimental murine liver inflammation and fibrosis. Hepatology. 1998;28:1597–606.

    Article  CAS  PubMed  Google Scholar 

  101. Zhang LJ, Zheng WD, Chen YX, Huang YH, Chen ZX, Zhang SJ, Shi MN, et al. Antifibrotic effects of interleukin-10 on experimental hepatic fibrosis. Hepatogastroenterology. 2007;54:2092–8.

    CAS  PubMed  Google Scholar 

  102. Julien B, Grenard P, Teixeira-Clerc F, Nhieu Van JT, Li L, Karsak M, Zimmer A, et al. Antifibrogenic role of the cannabinoid receptor CB2 in the liver. Gastroenterology. 2005;128:742–55.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramon Bataller MD, PhD .

Editor information

Editors and Affiliations

Abbreviations

ECM

Extracellular matrix proteins

HCV

Hepatitis C infection

HSC

Hepatic stellate cells

MMPs

Metalloproteinases

NASH

Nonalcoholic steatohepatitis

NF-κB

Nuclear factor kappa B

PDGF

Platelet-derived growth factor

ROS

Reactive oxygen species

TIMPs

Tissue inhibitors of metalloproteinases

TGFβ1

Transforming growth factor beta 1

VEGF

Vascular endothelial growth factor

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Odena, G., Stein, E., Bataller, R. (2015). Reversal of Cirrhosis. In: Keaveny, A., Cárdenas, A. (eds) Complications of Cirrhosis. Springer, Cham. https://doi.org/10.1007/978-3-319-13614-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13614-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13613-4

  • Online ISBN: 978-3-319-13614-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics