Skip to main content

Nitric Oxide and Genomic Stability

  • Chapter
  • First Online:
Nitric Oxide and Cancer: Pathogenesis and Therapy

Abstract

Epidemiological evidence accumulating over the years has provided a positive correlation between cancer incidence and chronic inflammation. Regardless of etiology, inflammatory conditions are characterized by overexpression of inducible nitric oxide synthase (iNOS) and overproduction of nitric oxide/reactive nitrogen species (NO/RNS) in epithelial and inflammatory cells at the site of carcinogenesis. NO/RNS produced in infected and inflamed tissues can contribute to the process of carcinogenesis by different mechanisms. In this chapter, we discuss NO/RNS-dependent mechanisms of genomic instability (GI) and bystander effects. We explain the mechanism of “synthetic lethality” of the NO-donor/PARP-inhibitor combination and its role in sensitization of the cancer cells to DNA-damaging agents. We postulate the “mutator field” theory and the definition of mutagenesis efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BDD:

Bystander DNA damage

BER:

Base excision repair

BRCA1:

Breast cancer type 1 susceptibility protein;

DSB:

Double-strand brake

EADC:

Esophageal adenocarcinoma

eNOS:

Endothelial nitric oxide synthase

GERD:

Gastro-esophageal reflux disease

HCC:

Hepatocellular carcinoma

HRND:

High concentration range of NO-donors

IBDs:

Inflammatory bowel diseases

iNOS:

Inducible nitric oxide synthase

LPS:

Lipopolysaccharides

MN:

Micronuclei

MRND:

Moderate concentration range of NO-donors

NHEJ:

Non-homologous end joining

NHL:

Non-Hodgkin lymphoma

NO/RNS:

Nitric oxide/reactive nitrogen species

OLP:

Oral lichen planus

OSCC:

Oral squamous cell carcinoma

OV:

Opisthorchis viverrini

PARP1:

Poly(ADP-ribose) polymerase 1

PC:

Prostate cancer

ROS:

Reactive oxygen species

SNP:

Single nucleotide polymorphisms

SSB:

Single-strand breaks

SSF:

Stress signal factors

References

  1. Yakovlev VA. Nitric oxide-dependent downregulation of BRCA1 expression promotes genetic instability. Cancer Res. 2013;73:706–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Bouvard V, Baan R, Straif K, Grosse Y, Secretan B, El Ghissassi F, Benbrahim-Tallaa L, Guha N, Freeman C, Galichet L, Cogliano V. A review of human carcinogens–Part B: biological agents. Lancet Oncol. 2009;10:321–2.

    Article  PubMed  Google Scholar 

  3. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420:860–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Balkwill F, Charles KA, Mantovani A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell. 2005;7:211–7.

    Article  CAS  PubMed  Google Scholar 

  5. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  6. Wu X, Takenaka K, Sonoda E, Hochegger H, Kawanishi S, Kawamoto T, Takeda S, Yamazoe M. Critical roles for polymerase zeta in cellular tolerance to nitric oxide-induced DNA damage. Cancer Res. 2006;66:748–54.

    Article  CAS  PubMed  Google Scholar 

  7. Vane JR, Mitchell JA, Appleton I, Tomlinson A, Bishop-Bailey D, Croxtall J, Willoughby DA. Inducible isoforms of cyclooxygenase and nitric-oxide synthase in inflammation. Proc Natl Acad Sci U S A. 1994;91:2046–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Lala PK, Chakraborty C. Role of nitric oxide in carcinogenesis and tumour progression. The Lancet Oncol. 2001;2:149–56.

    Article  CAS  Google Scholar 

  9. Hussain SP, He P, Subleski J, Hofseth LJ, Trivers GE, Mechanic L, Hofseth AB, Bernard M, Schwank J, Nguyen G, Mathe E, Djurickovic D, Haines D, Weiss J, Back T, Gruys E, Laubach VE, Wiltrout RH, Harris CC. Nitric oxide is a key component in inflammation-accelerated tumorigenesis. Cancer Res. 2008;68:7130–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Vaninetti NM, Geldenhuys L, Porter GA, Risch H, Hainaut P, Guernsey DL, Casson AG. Inducible nitric oxide synthase, nitrotyrosine and p53 mutations in the molecular pathogenesis of Barrett’s esophagus and esophageal adenocarcinoma. Mol Carcinog. 2008;47:275–85.

    Article  CAS  PubMed  Google Scholar 

  11. Chien YH, Bau DT, Jan KY. Nitric oxide inhibits DNA-adduct excision in nucleotide excision repair. Free Radic Biol Med. 2004;36:1011–7.

    Article  CAS  PubMed  Google Scholar 

  12. Jolly AJ, Wild CP, Hardie LJ. Sodium deoxycholate causes nitric oxide mediated DNA damage in oesophageal cells. Free Radic Res. 2009;43:234–40.

    Article  CAS  PubMed  Google Scholar 

  13. Ohshima H. Genetic and epigenetic damage induced by reactive nitrogen species: implications in carcinogenesis. Toxicol Lett. 2003;140–141:99–104.

    Article  PubMed  Google Scholar 

  14. Rajput S, Wilber A. Roles of inflammation in cancer initiation, progression, and metastasis. Fron Biosci. 2010;2:176–83.

    Article  Google Scholar 

  15. McAdam E, Haboubi HN, Forrester G, Eltahir Z, Spencer-Harty S, Davies C, Griffiths AP, Baxter JN, Jenkins GJ. Inducible nitric oxide synthase (iNOS) and nitric oxide (NO) are important mediators of reflux-induced cell signalling in esophageal cells. Carcinogenesis. 2012;33:2035–43.

    Article  CAS  PubMed  Google Scholar 

  16. Lonkar P, Dedon PC. Reactive species and DNA damage in chronic inflammation: reconciling chemical mechanisms and biological fates. Int J Cancer. 2011;128:1999–2009.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Clemons NJ, McColl KE, Fitzgerald RC. Nitric oxide and acid induce double-strand DNA breaks in Barrett’s esophagus carcinogenesis via distinct mechanisms. Gastroenterology. 2007;133:1198–209.

    Article  CAS  PubMed  Google Scholar 

  18. Shaked H, Hofseth LJ, Chumanevich A, Chumanevich AA, Wang J, Wang Y, Taniguchi K, Guma M, Shenouda S, Clevers H, Harris CC, Karin M. Chronic epithelial NF-kappaB activation accelerates APC loss and intestinal tumor initiation through iNOS up-regulation. Proc Natl Acad Sci U S A. 2012;109:14007–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Wang SS, Davis S, Cerhan JR, Hartge P, Severson RK, Cozen W, Lan Q, Welch R, Chanock SJ, Rothman N. Polymorphisms in oxidative stress genes and risk for non-Hodgkin lymphoma. Carcinogenesis. 2006;27:1828–34.

    Article  CAS  PubMed  Google Scholar 

  20. Marangoni K, Araujo TG, Neves AF, Goulart LR. The—786T > C promoter polymorphism of the NOS3 gene is associated with prostate cancer progression. BMC Cancer. 2008;8:273.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Thomas DD, Ridnour LA, Isenberg JS, Flores-Santana W, Switzer CH, Donzelli S, Hussain P, Vecoli C, Paolocci N, Ambs S, Colton CA, Harris CC, Roberts DD, Wink DA. The chemical biology of nitric oxide: implications in cellular signaling. Free Radic Biol Med. 2008;45:18–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Wink DA, Ridnour LA, Hussain SP, Harris CC. The reemergence of nitric oxide and cancer. Nitric Oxide. 2008;19:65–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Wink DA, Mitchell JB. Nitric oxide and cancer: an introduction. Free Radic Biol Med. 2003;34:951–4.

    Article  CAS  PubMed  Google Scholar 

  24. Wei L, Gravitt PE, Song H, Maldonado AM, Ozbun MA. Nitric oxide induces early viral transcription coincident with increased DNA damage and mutation rates in human papillomavirus-infected cells. Cancer Res. 2009;69:4878–84.

    Article  CAS  PubMed  Google Scholar 

  25. Nagasawa H, Little JB. Induction of sister chromatid exchanges by extremely low doses of alpha-particles. Cancer Res. 1992;52:6394–6.

    CAS  PubMed  Google Scholar 

  26. Azzam EI, de Toledo SM, Little JB. Stress signaling from irradiated to non-irradiated cells. Curr Cancer Drug Targets. 2004;4:53–64.

    Article  CAS  PubMed  Google Scholar 

  27. Shao C, Stewart V, Folkard M, Michael BD, Prise KM. Nitric oxide- mediated signaling in the bystander response of individually targeted glioma cells. Cancer Res. 2003;63:8437–42.

    CAS  PubMed  Google Scholar 

  28. Allavena P, Sica A, Solinas G, Porta C, Mantovani A. The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Crit Rev Oncol Hematol. 2008;66:1–9.

    Article  PubMed  Google Scholar 

  29. Bunt SK, Yang L, Sinha P, Clements VK, Leips J, Ostrand-Rosenberg S. Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression. Cancer Res. 2007;67:10019–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Whiteside TL. The tumor microenvironment and its role in promoting tumor growth. Oncogene. 2008;27:5904–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Shao C, Folkard M, Michael BD, Prise KM. Targeted cytoplasmic irradiation induces bystander responses. Proc Natl Acad Sci U S A. 2004;101:13495–500.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Yakovlev VA, Bayden AS, Graves PR, Kellogg GE, Mikkelsen RB. Nitration of the tumor suppressor protein p53 at tyrosine 327 promotes p53 oligomerization and activation. Biochemistry. 2010;49:5331–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Shrivastav M, De Haro LP, Nickoloff JA. Regulation of DNA double- strand break repair pathway choice. Cell Res. 2008;18:134–47.

    Article  CAS  PubMed  Google Scholar 

  34. Hofseth LJ, Saito S, Hussain SP, Espey MG, Miranda KM, Araki Y, Jhappan C, Higashimoto Y, He P, Linke SP, Quezado MM, Zurer I, Rotter V, Wink DA, Appella E, Harris CC. Nitric oxide-induced cellular stress and p53 activation in chronic inflammation. Proc Natl Acad Sci U S A. 2003;100:143–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Schneiderhan N, Budde A, Zhang Y, Brune B. Nitric oxide induces phosphorylation of p53 and impairs nuclear export. Oncogene. 2003;22:2857–68.

    Article  CAS  PubMed  Google Scholar 

  36. Wang X, Zalcenstein A, Oren M. Nitric oxide promotes p53 nuclear retention and sensitizes neuroblastoma cells to apoptosis by ionizing radiation. Cell Death Differ. 2003;10:468–76.

    Article  CAS  PubMed  Google Scholar 

  37. Stamler JS, Simon DI, Osborne JA, Mullins ME, Jaraki O, Michel T, Singel DJ, Loscalzo J. S-nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc Natl Acad Sci U S A. 1992;89:444–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Stamler JS, Meissner G. Physiology of nitric oxide in skeletal muscle. Physiol Rev. 2001;81:209–37.

    CAS  PubMed  Google Scholar 

  39. Mikkelsen RB, Wardman P. Biological chemistry of reactive oxygen and nitrogen and radiation-induced signal transduction mechanisms. Oncogene. 2003;22:5734–54.

    Article  CAS  PubMed  Google Scholar 

  40. Souza JM, Peluffo G, Radi R. Protein tyrosine nitration–functional alteration or just a biomarker? Free Radic Biol Med. 2008;45:357–66.

    Article  CAS  PubMed  Google Scholar 

  41. Radi R. Nitric oxide, oxidants, and protein tyrosine nitration. Proc Natl Acad Sci U S A. 2004;101:4003–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Yakovlev VA, Mikkelsen RB. Protein tyrosine nitration in cellular signal transduction pathways. J Recept Signal Transduct Res. 2010;30:420–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Venkitaraman AR. Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell. 2002;108:171–82.

    Article  CAS  PubMed  Google Scholar 

  44. Lou Z, Minter-Dykhouse K, Chen J. BRCA1 participates in DNA decatenation. Nat Struct Mol Biol. 2005;12:589–93.

    Article  CAS  PubMed  Google Scholar 

  45. Joukov V, Groen AC, Prokhorova T, Gerson R, White E, Rodriguez A, Walter JC, Livingston DM. The BRCA1/BARD1 heterodimer modulates ran- dependent mitotic spindle assembly. Cell. 2006;127:539–52.

    Article  CAS  PubMed  Google Scholar 

  46. Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, Tavtigian S, Liu Q, Cochran C, Bennett LM, Ding W, et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science. 1994;266:66–71.

    Article  CAS  PubMed  Google Scholar 

  47. Ohama T, Brautigan DL. Endotoxin conditioning induces VCP/p97- mediated and inducible nitric-oxide synthase-dependent Tyr284 nitration in protein phosphatase 2A. J Biol Chem. 2010;285:8711–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Bindra RS, Gibson SL, Meng A, Westermark U, Jasin M, Pierce AJ, Bristow RG, Classon MK, Glazer PM. Hypoxia-induced down-regulation of BRCA1 expression by E2Fs. Cancer Res. 2005;65:11597–604.

    Article  CAS  PubMed  Google Scholar 

  49. Mikula I, Durocher S, Martasek P, Mutus B, Slama-Schwok A. Isoform- specific differences in the nitrite reductase activity of nitric oxide synthases under hypoxia. Biochem J. 2009;418:673–82.

    Article  CAS  PubMed  Google Scholar 

  50. Strijdom H, Friedrich SO, Hattingh S, Chamane N, Lochner A. Hypoxia-induced regulation of nitric oxide synthase in cardiac endothelial cells and myocytes and the role of the PI3-K/PKB pathway. Mol Cell Biochem. 2009;321:23–35.

    Article  CAS  PubMed  Google Scholar 

  51. Feelisch M, Fernandez BO, Bryan NS, Garcia-Saura MF, Bauer S, Whitlock DR, Ford PC, Janero DR, Rodriguez J, Ashrafian H. Tissue processing of nitrite in hypoxia: an intricate interplay of nitric oxide-generating and -scavenging systems. J Biol Chem. 2008;283:33927–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Bindra RS, Glazer PM. Repression of RAD51 gene expression by E2F4/p130 complexes in hypoxia. Oncogene. 2007;26:2048–57.

    Article  CAS  PubMed  Google Scholar 

  53. Sakai A, Sakasai R, Kakeji Y, Kitao H, Maehara Y. PARP and CSB modulate the processing of transcription-mediated DNA strand breaks. Genes Genet Syst. 2012;87:265–72.

    Article  CAS  PubMed  Google Scholar 

  54. Wesierska-Gadek J, Zulehner N, Ferk F, Skladanowski A, Komina O, Maurer M. PARP inhibition potentiates the cytotoxic activity of C-1305, a selective inhibitor of topoisomerase II, in human BRCA1-positive breast cancer cells. Biochem Pharmcol. 2012;84:1318–31.

    Article  CAS  Google Scholar 

  55. Drew Y, Plummer R. PARP inhibitors in cancer therapy: two modes of attack on the cancer cell widening the clinical applications. Drug Resist Updat. 2009;12:153–6.

    Article  CAS  PubMed  Google Scholar 

  56. Peralta-Leal A, Rodriguez-Vargas JM, Aguilar-Quesada R, Rodriguez MI, Linares JL, de Almodovar MR, Oliver FJ. PARP inhibitors: new partners in the therapy of cancer and inflammatory diseases. Free Radic Biol Med. 2009;47:13–26.

    Article  CAS  PubMed  Google Scholar 

  57. Rouleau M, Patel A, Hendzel MJ, Kaufmann SH, Poirier GG. PARP inhibition: PARP1 and beyond. Nat Rev Cancer. 2010;10:293–301.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Daemen A, Wolf DM, Korkola JE, Griffith OL, Frankum JR, Brough R, Jakkula LR, Wang NJ, Natrajan R, Reis-Filho JS, Lord CJ, Ashworth A, Spellman PT, Gray JW, van’t Veer LJ. Cross-platform pathway-based analysis identifies markers of response to the PARP inhibitor olaparib. Breast Cancer Res Treat. 2012;135:505–17.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, Santarosa M, Dillon KJ, Hickson I, Knights C, Martin NM, Jackson SP, Smith GC, Ashworth A. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005;434:917–21.

    Article  CAS  PubMed  Google Scholar 

  60. Kummar S, Chen A, Parchment RE, Kinders RJ, Ji J, Tomaszewski JE, Doroshow JH. Advances in using PARP inhibitors to treat cancer. BMC Med. 2012;10:25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Campeau PM, Foulkes WD, Tischkowitz MD. Hereditary breast cancer: new genetic developments, new therapeutic avenues. Hum Genet. 2008;124:31–42.

    Article  CAS  PubMed  Google Scholar 

  62. Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol. 1996;271:C1424–37.

    CAS  PubMed  Google Scholar 

  63. Murad F. Nitric oxide signaling: would you believe that a simple free radical could be a second messenger, autacoid, paracrine substance, neurotransmitter, and hormone? Recent Prog Horm Res. 1998;53:43–59; discussion 59–60.

    CAS  PubMed  Google Scholar 

  64. Han W, Chen S, Yu KN, Wu L. Nitric oxide mediated DNA double strand breaks induced in proliferating bystander cells after alpha-particle irradiation. Mutat Res. 2010;684:81–9.

    Article  CAS  PubMed  Google Scholar 

  65. Ghosh S, Maurya DK, Krishna M. Role of iNOS in bystander signaling between macrophages and lymphoma cells. Int J Radiat Oncol Biol Phys. 2008;72:1567–74.

    Article  CAS  PubMed  Google Scholar 

  66. Dickey JS, Baird BJ, Redon CE, Avdoshina V, Palchik G, Wu J, Kondratyev A, Bonner WM, Martin OA. Susceptibility to bystander DNA damage is influenced by replication and transcriptional activity. Nucleic Acids Res. 2012;40:10274–86.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Dickey JS, Baird BJ, Redon CE, Sokolov MV, Sedelnikova OA, Bonner WM. Intercellular communication of cellular stress monitored by gamma-H2AX induction. Carcinogenesis. 2009;30:1686–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Martinez-Outschoorn UE, Balliet RM, Rivadeneira DB, Chiavarina B, Pavlides S, Wang C, Whitaker-Menezes D, Daumer KM, Lin Z, Witkiewicz AK, Flomenberg N, Howell A, Pestell RG, Knudsen ES, Sotgia F, Lisanti MP. Oxidative stress in cancer associated fibroblasts drives tumor-stroma co- evolution: a new paradigm for understanding tumor metabolism, the field effect and genomic instability in cancer cells. Cell Cycle. 2010;9:3256–76.

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The present work was supported by National Institutes of Health Grant R01 CA90881.

Conflict Statement

No potential conflicts of interest were disclosed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasily A. Yakovlev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yakovlev, V. (2015). Nitric Oxide and Genomic Stability. In: Bonavida, B. (eds) Nitric Oxide and Cancer: Pathogenesis and Therapy. Springer, Cham. https://doi.org/10.1007/978-3-319-13611-0_2

Download citation

Publish with us

Policies and ethics