Skip to main content

Nitric Oxide, Coagulation and Cancer

  • Chapter
  • First Online:
Nitric Oxide and Cancer: Pathogenesis and Therapy

Abstract

Nitric Oxide (NO) is a well-known potent and rapid vasodilator and inhibitor of coagulation. Synthesized from an L-arginine precursor, NO is produced via the Nitric Oxide Synthase enzyme which is expressed constitutively in endothelial cells. Nitric oxide has a wide range of biological properties that maintain vascular homeostasis and protection of the vessel from injurious consequences. The decreased production of NO in pathological states causes deleterious effects, creating an endothelial dysfunction state with a wide variety of subsequent diverse biological effects. There is now evidence of the link between hypoxia and/or reduction of NO availability and coagulopathies. NO is also a modulator of various cancer-related events and has anti-tumor properties. Cancer is a known hypercoagulable state and hypoxia is a typical feature of the tumor micro-environment. Cancer patients—particularly those with advanced or metastatic states—are at higher risk of developing venous and arterial thromboembolic events. The dichotomous nature of nitric oxide with regard to its tumorigenic and tumoricidal properties are at present under intense investigation. The transcendent field of nanotechnology has moved into the realm of NO donor therapy, though currently there are no commercially available carriers of NO. While nanotechnology is not quite at the translational research stage, it poses the greatest potential for storage and site-specific delivery of high concentrations of NO to tumors. In this chapter, we review the effects of NO on various hemostatic elements, the pro-tumoral and anti-tumoral effects of NO and finally shed some light on the link between NO, cancer and coagulopathies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

NO:

nitric oxide

NOS:

nitric oxide synthase

aPTT:

activated partial thromboplastin time

vWF:

von Willebrand factor

LPS:

lipoproteinpolysaccharides

TEG:

thromboelastography

TF:

tissue factor

MPs:

microparticles

PCa:

prostate cancer

GTN:

glyceryl trinitrate

tPA:

tissue plasminogen activator

uPA:

urokinase type plasminogen activator

PAI:

plasminogen activator inhibitors

L-NMMA:

L-NG-monomethylarginine

nNOS:

neuro-isoform of NOS

eNOS:

endothelial isoform of NOS

iNOS:

inducible NOS

PGE2:

prostaglandin E2

VEGF:

vascular endothelial growth factor

COX-2:

cyclooxygenase-2

EMT:

epithelial-mesenchymal transition

MMP:

matrix metalloproteinases

NODD:

NO-donating drugs

NSAID:

non-steroidal anti-inflammatory drug

References

  1. Moncada S, Palmer RMJ, Higgs A. Nitric oxide: physiology, pathology and pharmacology. Pharmacol Rev. 1991; 43:109–42.

    CAS  PubMed  Google Scholar 

  2. Geller Da Nusseler AK Di Silvo. Cytokines, endotoxin and glucocorticoids regulate the expression of inducible nitric oxide synthase in hepatocytes. Proc Natl Acad Sci USA. 1993; 90:522–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Killbourn RG, Belloni P: Endothelial cell production of nitrogen oxides in response to interferon gamma in combination with tumor necrosis factor, interleukin-1, or endotoxin. J Natl Cancer Inst. 1990; 82:772–6.

    Article  Google Scholar 

  4. Tousoulis D1, Kampoli AM, Tentolouris C, Papageorgiou N, Stefanadis C. The role of nitric oxide on endothelial function. Curr Vasc Pharmacol. 2012;10:4–18.

    Article  CAS  PubMed  Google Scholar 

  5. Toukh M, Pereira EJ, Falcon BJ, Liak C, Lerner M, Hopman WM, Iscoe S, Fitzpatrick MF, Othman M. CPAP reduces hypercoagulability, as assessed by thromboelastography, in severe obstructive sleep apnea. Respir Physiol Neurobiol. 2012;183:218–23.

    Article  PubMed  Google Scholar 

  6. Falcón BJ, Cotechini T, Macdonald-Goodfellow SK, Othman M, Graham CH. Abnormal inflammation leads to maternal coagulopathies associated with placental haemostatic alterations in a rat model of fetal loss. Thromb Haemost. 2012; 107:438–47.

    Article  PubMed  Google Scholar 

  7. Augustin HG, Kozian DH, Johnson RC. Differentiation of endothelial cells: analysis of the constitutive and activated endothelial cell phenotypes. Bioessays. 1994;16:901.

    Article  CAS  PubMed  Google Scholar 

  8. Pries AR, Kuebler WM. Normal endothelium. Handb Exp Pharmacol. 2006;176:1–40.

    PubMed  Google Scholar 

  9. Cines DB, Pollak ES, Buck, CA et al. Endothelial Cells in Physiology and in the Pathophysiology of Vascular Disorders. Blood. 1998;91: 3527–6.

    CAS  PubMed  Google Scholar 

  10. Kwaan HC, Samama MM. The significance of endothelial heterogeneity in thrombosis and hemostasis. Sem Thromb Hemost. 2010;36:286–300.

    Article  Google Scholar 

  11. Tousoulis D1, Kampoli AM, Tentolouris C, Papageorgiou N, Stefanadis C. The role of nitric oxide on endothelial function. Curr Vasc Pharmacol. 2012 Jan;10:4–18.

    Article  CAS  PubMed  Google Scholar 

  12. Jaffe EA, Nachman RL, Becker CG, Minick CR. Culture of human endothelial cells derived from umbilical veins: Identification by morphologic criteria. J Clin Invest. 1973;52:2745.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Gimbrone MA, Cotran RS, Folkman J. Human vascular endothelial cells in culture. Growth and DNA synthesis. J Cell Biol. 1974;60:673.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Lewis LJ, Hoak JC, Maca RD, Fry GL. Replication of human endothelial cells in culture. Science. 1973;181:453.

    Article  CAS  PubMed  Google Scholar 

  15. Jourdain M1, Tournoys A, Leroy X, et al. Effects of N omega-nitro-L-arginine methyl ester on the endotoxin-induced disseminated intravascular coagulation in porcine septic shock. Crit Care Med. 1997;25:452–9.

    Article  CAS  PubMed  Google Scholar 

  16. Goldstein B, Baldassarre J, Young JN. Effects of inhaled nitric oxide on hemostasis in healthy adults treated with heparin: a randomized, controlled, blinded crossover study. Thromb J. 2012; 10:1.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Högman M, Frostell C, Arnberg H, Sandhagen B, Hedenstierna G. Prolonged bleeding time during nitric oxide inhalation in the rabbit. Acta Physiol Scand. 1994;151:125–9

    Article  PubMed  Google Scholar 

  18. Remuzzi G, Perico N, Zoja C, Corna D, Macconi D, Vigano G. Role of endothelium-derived nitric oxide in the bleeding tendency of uremia. J Clin Invest. 1990;86:1768–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Radomski MW, Palmer RMJ, Moncada S. Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium. Lancet. 1987;2:1057

    Article  CAS  PubMed  Google Scholar 

  20. Radomski MW, Palmer RMJ, Moncada S. Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium. Biochem Biophys Res Commun. 1987;148:1482–9.

    Article  CAS  PubMed  Google Scholar 

  21. Kawabata A. Evidence that endogenous nitric oxide modulates plasma fibrinogen levels in the rat. Br J Pharmacol. 1996; 117: 236–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Rossiello MR, Momi S, Caracchini R et al. A novel nitric oxide-releasing statin derivative exerts an antiplatelet/antithrombotic activity and inhibits tissue factor expression. J Thromb Haemost. 2005;3:2554–62.

    Article  CAS  PubMed  Google Scholar 

  23. Krejcy K, Schmetterer L, Johannes Kastner, J et al. Role of nitric oxide in hemostatic system activation in vivo in humans. arterio, thromb, Vas Biol. 1995; 15: 2063–7

    Article  CAS  Google Scholar 

  24. Tanriverdi S1, Koroglu OA, Uygur O, Balkan C, Yalaz M, Kultursay N. The effect of inhaled nitric oxide therapy on thromboelastogram in newborns with persistent pulmonary hypertension. Eur J Pediatr. 2014;173:1381–5

    Article  CAS  PubMed  Google Scholar 

  25. Tanriverdi S1, Koroglu OA, Uygur O, Balkan C, Yalaz M, Kultursay N. Inhibitory effect of nitrite on coagulation processes demonstrated by thrombelastography Nitric Oxide. 2014;40:45–51.

    Article  Google Scholar 

  26. Packer MA, Stasiv Y, Benraiss A, et al. Nitric oxide negatively regulates mammalian adult neurogenesis. Proc Natl Acad Sci USA. 2003;100:9566–9571.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Shariat-Madar Z, Mahdi F, Warnock M, et al. Bradykinin B2 receptor knockout mice are protected from thrombosis by increased nitric oxide and prostacyclin. Blood. 2006; 108: 192–199.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Soop A, Hållström L, Frostell C, Wallén H, Mobarrez F, Pisetsky DS. Effect of lipopolysaccharide administration on the number, phenotype and content of nuclear molecules in blood microparticles of normal human subjects. Scand J Immunol. 2013;78:205–13.

    Article  CAS  PubMed  Google Scholar 

  29. Sterniczuk B, Toukh M, Kaur H, et al. Pro-coagulant properties of prostate cancer cell lines and the effect of androgen deprivation. Abstract at ISTH 2014 June 24-27 Milwakuee, USA.

    Google Scholar 

  30. Cotechini T1, Othman M, Graham CH. Nitroglycerin prevents coagulopathies and foetal death associated with abnormal maternal inflammation in rats. Thromb Haemost. 2012;107:864–74.

    Article  CAS  PubMed  Google Scholar 

  31. Hagiwara S1, Iwasaka H, Shingu C, Matsumoto S, Uchida T, Noguchi T. High-dose antithrombin III prevents heat stroke by attenuating systemic inflammation in rats. Inflamm Res. 2010;59:511–8.

    Article  CAS  PubMed  Google Scholar 

  32. Lemarie J, Blet A, Bouazza Y, Boisrame-Helms J, Meziani F, Levy B. Dexamethasone and recombinant human activated protein C improve myocardial function and efficiency during experimental septic shock. Shock. 2014;41:522–7.

    Article  CAS  PubMed  Google Scholar 

  33. Kwaan HC. The biologic role of components of the plasminogen-plasmin system. Prog Cardiovasc Dis. 1992;34:309–16.

    Article  CAS  PubMed  Google Scholar 

  34. Kwaan HC. The plasminogen-plasmin system in malignancy. Cancer Met Rev. 1992;11:291–311.

    Article  CAS  Google Scholar 

  35. Lidbury PS, Korbut R, Vane JR. Sodium nitroprusside modulates the fibrinolytic system in the rabbit. Brit J Pharm. 1990;101:527–350.

    Article  CAS  Google Scholar 

  36. Grodzinska L, Hafner G, Darius H. Effect of molsidomine on t-PA and PAI activity in man: a double blind, placebo controlled study. Thromb Hemost. 1990;64:485.

    CAS  Google Scholar 

  37. Newby DE, Wright RA, Dawson P, et al. The L-arginine/nitric oxide pathway contributes to the acute release of tissue plasminogen activator in vivo in man. Cardiovasc Res. 1998;38:485–92.

    Article  CAS  PubMed  Google Scholar 

  38. Zhu XJ, Hua Y, Jiang J, et al. Neuronal nitric oxide synthase-derived nitric oxide inhibits neurogenesis in the adult dentate gyrus by down-regulating cyclic AMP response element binding protein phosphorylation. Neuroscience 2006;141:827–36.

    Article  CAS  PubMed  Google Scholar 

  39. Bon CL, Garthwaite J. On the role of nitric oxide in hippocampal long-term potentiation. J Neurosci. 2003;23:1941–8.

    CAS  PubMed  Google Scholar 

  40. Araujo IM, Carvalho CM. Role of nitric oxide and calpain activation in neuronal death and survival. Curr Drug Targets CNS Neurolog Disord. 2005;4:319–24.

    Article  CAS  Google Scholar 

  41. Baron A, Hommet Y, Casse F, Vivien D. Tissue-type plasminogen activator induces plasmin-dependent proteolysis of intracellular neuronal nitric oxide synthase. Bio Cell. 2010;102:539–47.

    Article  CAS  Google Scholar 

  42. Zhou L, Zhu DY. Neuronal nitric oxide synthase: structure, subcellular localization, regulation, and clinical implications. Nitric Oxide. 2009;20:223–30.

    Article  CAS  PubMed  Google Scholar 

  43. Parathath SR, Parathath S, Tsirka SE. Nitric oxide mediates neurodegeneration and breakdown of the blood-brain barrier in tPA-dependent excitotoxic injury in mice. J Cell Sci. 2006;119:339–49.

    Article  CAS  PubMed  Google Scholar 

  44. Park L, Gallo EF, Anrather J, et al. Key role of tissue plasminogen activator in neurovascular coupling. Proc Natl Acad Sci USA. 2008;105:1073–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Kaikita K, Fogo AB, Ma L, Schoenhard JA, Brown NJ, Vaughan DE. Plasminogen activator inhibitor-1 deficiency prevents hypertension and vascular fibrosis in response to long-term nitric oxide synthase inhibition. Circulation. 2001;104:839–44.

    Article  CAS  PubMed  Google Scholar 

  46. Boe AE, Eren M, Murphy SB, et al. Plasminogen activator inhibitor-1 antagonist TM5441 attenuates Nomega-nitro-L-arginine methyl ester-induced hypertension and vascular senescence. Circulation. 2013;128:2318–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Eren M, Boe AE, Murphy SB, et al. PAI-1-regulated extracellular proteolysis governs senescence and survival in Klotho mice. Proc Natl Acad Sci USA. 2014;111:7090–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Radomski MW, Palmer RM, Moncada S. Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium. Lancet. 1987;2:1057–8.

    Article  CAS  PubMed  Google Scholar 

  49. Azuma H, Ishikawa M, Sekizaki S. Endothelium-dependent inhibition of platelet aggregation. Brit J Pharmacol. 1986;88:411–5.

    Article  CAS  Google Scholar 

  50. Busse R, Luckhoff A, Bassenge E. Endothelium-derived relaxant factor inhibits platelet activation. Naunyn-Schmiedeberg’s Arch Pharmacol. 1987;336:566–71.

    Article  CAS  Google Scholar 

  51. Armstead VE, Minchenko AG, Schuhl RA, Hayward R, Nossuli TO, Lefer AM. Regulation of P-selectin expression in human endothelial cells by nitric oxide. Am J Physiol. 1997;273:740–6.

    Google Scholar 

  52. Minamino T, Kitakaze M, Sanada S, et al. Increased expression of P-selectin on platelets is a risk factor for silent cerebral infarction in patients with atrial fibrillation: role of nitric oxide. Circulation. 1998;98:1721–7.

    Article  CAS  PubMed  Google Scholar 

  53. Takajo Y, Ikeda H, Haramaki N, Murohara T, Imaizumi T. Augmented oxidative stress of platelets in chronic smokers. Mechanisms of impaired platelet-derived nitric oxide bioactivity and augmented platelet aggregability. J Am Coll Cardiol. 2001;38:1320–7.

    Article  CAS  PubMed  Google Scholar 

  54. Tyml K. Critical role for oxidative stress, platelets, and coagulation in capillary blood flow impairment in sepsis. Microcirculation. 2011;18:152–62.

    Article  CAS  PubMed  Google Scholar 

  55. Mineo C. Inhibition of nitric oxide and antiphospholipid antibody-mediated thrombosis. Curr Rheumatol Rep. 2013;15:324.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Ramesh S, Morrell CN, Tarango C, et al. Antiphospholipid antibodies promote leukocyte-endothelial cell adhesion and thrombosis in mice by antagonizing eNOS via beta2GPI and apoER2. J Clin Invest. 2011;121:120–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Ames PR, Batuca JR, Ciampa A, Iannaccone L, Delgado Alves J. Clinical relevance of nitric oxide metabolites and nitrative stress in thrombotic primary antiphospholipid syndrome. J Rheum. 2010;37:2523–30.

    Article  CAS  PubMed  Google Scholar 

  58. Choudhari SK, Chaudhary M, Bagde S, Gadbail AR, Joshi V. Nitric oxide and cancer: a review. World J Surg Onc. 2013;11:118.

    Article  Google Scholar 

  59. Mocellin S, Bronte V, Nitti D. Nitric oxide, a double edged sword in cancer biology: searching for therapeutic opportunities. Medicinal Res Rev. 2007;27:317–52.

    Article  CAS  Google Scholar 

  60. Habib S, Ali A. Biochemistry of nitric oxide. Indian J Clin Biochem. 2011;26:3–17.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. De Sanctis F, Sandri S, Ferrarini G, et al. The emerging immunological role of post-translational modifications by reactive nitrogen species in cancer microenvironment. Front Immunol. 2014;5:69.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Kundu JK, Surh YJ. Emerging avenues linking inflammation and cancer. Free Radic Bio Med. 2012;52:2013–2037.

    Article  CAS  Google Scholar 

  63. Burke AJ, Sullivan FJ, Giles FJ, Glynn SA. The yin and yang of nitric oxide in cancer progression. Carcinogenesis. 2013;34:503–12.

    Article  CAS  PubMed  Google Scholar 

  64. Hussain SP, He P, Subleski J, et al. Nitric oxide is a key component in inflammation-accelerated tumorigenesis. Cancer Res. 2008;68:7130–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Wei L, Gravitt PE, Song H, Maldonado AM, Ozbun MA. Nitric oxide induces early viral transcription coincident with increased DNA damage and mutation rates in human papillomavirus-infected cells. Cancer Res. 2009;69:4878–84.

    Article  CAS  PubMed  Google Scholar 

  66. Brune B. Nitric oxide: NO apoptosis or turning it ON? Cell Death Differ. 2003;10:864–9.

    Article  PubMed  Google Scholar 

  67. Choi BM, Pae HO, Jang SI, Kim YM, Chung HT. Nitric oxide as a pro-apoptotic as well as anti-apoptotic modulator. J Biochem Molec Bio. 2002;35:116–1126.

    Article  CAS  Google Scholar 

  68. Ziche M, Morbidelli L. Nitric oxide and angiogenesis. J Neuro-onc. 2000;50:139–48.

    Article  CAS  Google Scholar 

  69. Morbidelli L, Donnini S, Ziche M. Role of nitric oxide in the modulation of angiogenesis. Curr Pharm Des. 2003;9:521–30.

    Article  CAS  PubMed  Google Scholar 

  70. Xu W, Liu LZ, Loizidou M, Ahmed M, Charles IG. The role of nitric oxide in cancer. Cell Res. 2002;12:311–20

    Article  PubMed  Google Scholar 

  71. Klymkowsky MW, Savagner P. Epithelial-mesenchymal transition: a cancer researcher’s conceptual friend and foe. Am J Pathol. 2009;174:1588–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Savagner P. The epithelial-mesenchymal transition (EMT) phenomenon. Ann Oncology Off J Euro Soc Med Onc/ESMO. 2010;21(Suppl 7):89–92.

    Google Scholar 

  73. Karadayi N, Kandemir NO, Yavuzer D, Korkmaz T, Gecmen G, Kokturk F. Inducible nitric oxide synthase expression in gastric adenocarcinoma: impact on lymphangiogenesis and lymphatic metastasis. Diagn Pathol. 2013;8:151.

    Article  PubMed Central  PubMed  Google Scholar 

  74. Siegert A, Rosenberg C, Schmitt WD, Denkert C, Hauptmann S. Nitric oxide of human colorectal adenocarcinoma cell lines promotes tumour cell invasion. Brit J Cancer. 2002;86:1310–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Lala PK, Orucevic A. Role of nitric oxide in tumor progression: lessons from experimental tumors. Cancer Metastasis Rev. 1998;17:91–106.

    Article  CAS  PubMed  Google Scholar 

  76. Krischel V, Bruch-Gerharz D, Suschek C, Kroncke KD, Ruzicka T, Kolb-Bachofen V. Biphasic effect of exogenous nitric oxide on proliferation and differentiation in skin derived keratinocytes but not fibroblasts. J Invest Dermatol. 1998;111:286–91.

    Article  CAS  PubMed  Google Scholar 

  77. Marshall HE, Stamler JS. Nitrosative stress-induced apoptosis through inhibition of NF-kappa B. J Bio Chem. 2002;277:34223–8.

    Article  CAS  Google Scholar 

  78. Bonavida B, Baritaki S. Dual role of NO donors in the reversal of tumor cell resistance and EMT: Downregulation of the NF-kappaB/Snail/YY1/RKIP circuitry. Nitric Oxide. 2011;24:1–7.

    Article  CAS  PubMed  Google Scholar 

  79. Shahani N, Sawa A. Protein S-nitrosylation: role for nitric oxide signaling in neuronal death. Biochimica et biophysica acta. 2012;1820:736–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Baritaki S, Huerta-Yepez S, Sahakyan A, et al. Mechanisms of nitric oxide-mediated inhibition of EMT in cancer: inhibition of the metastasis-inducer Snail and induction of the metastasis-suppressor RKIP. Cell Cycle. 2010;9:4931–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Wu J, Akaike T, Maeda H. Modulation of enhanced vascular permeability in tumors by a bradykinin antagonist, a cyclooxygenase inhibitor, and a nitric oxide scavenger. Cancer Res. 1998;58:159–65.

    CAS  PubMed  Google Scholar 

  82. Kawamori T, Lubet R, Steele VE, et al. Chemopreventive effect of curcumin, a naturally occurring anti-inflammatory agent, during the promotion/progression stages of colon cancer. Cancer Res. 1999;59:597–601.

    CAS  PubMed  Google Scholar 

  83. Rao CV, Kawamori T, Hamid R, Reddy BS. Chemoprevention of colonic aberrant crypt foci by an inducible nitric oxide synthase-selective inhibitor. Carcinogenesis. 1999;20:641–44.

    Article  CAS  PubMed  Google Scholar 

  84. Carpenter AW, Schoenfisch MH. Nitric oxide release: part II. Therapeutic applications. Chemical Soc Rev. 2012;41:3742–52.

    Article  CAS  Google Scholar 

  85. De Ridder M Verellen D Verovski V Storme G. Hypoxic tumor cell radiosensitization through nitric oxide. Nitric Oxide. 2008;19:164–9.

    Article  CAS  PubMed  Google Scholar 

  86. Aranda E, Lopez-Pedrera C, De La Haba-Rodriguez JR, Rodriguez-Ariza A. Nitric oxide and cancer: the emerging role of S-nitrosylation. Curr Mol Med. 2012;12:50–67.

    Article  CAS  PubMed  Google Scholar 

  87. Oronsky BT, Knox SJ, Scicinski JJ. Is nitric oxide (no) the last word in radiosensitization? a review. Translational Onc. 2012;5:66–71.

    Article  Google Scholar 

  88. Hirst D, Robson T. Nitric oxide in cancer therapeutics: interaction with cytotoxic chemotherapy. Current Pharm Design. 2010;16:411–20.

    Article  CAS  Google Scholar 

  89. Lehrman S. Virus treatment questioned after gene therapy death. Nature. 1999;401:517–8.

    Article  CAS  PubMed  Google Scholar 

  90. Rigas B, Kashfi K. Nitric-oxide-donating NSAIDs as agents for cancer prevention. Trends Mol Med. 2004;10:324–30.

    Article  CAS  PubMed  Google Scholar 

  91. Semenza GL. Targeting HIF-1 for cancer therapy. Nature Rev Cancer. 2003;3:721–32.

    Article  CAS  Google Scholar 

  92. Williams JL, Nath N, Chen J, et al. Growth inhibition of human colon cancer cells by nitric oxide (NO)-donating aspirin is associated with cyclooxygenase-2 induction and beta-catenin/T-cell factor signaling, nuclear factor-kappaB, and NO synthase 2 inhibition: implications for chemoprevention. Cancer Res. 2003;63:7613–8.

    CAS  PubMed  Google Scholar 

  93. Ishiguro H, Kawahara T. Nonsteroidal anti-inflammatory drugs and prostatic diseases. BioMed Res Internatol. 2014;2014:436123.

    Google Scholar 

  94. Royle JS, Ross JA, Ansell I, Bollina P, Tulloch DN, Habib FK. Nitric oxide donating nonsteroidal anti-inflammatory drugs induce apoptosis in human prostate cancer cell systems and human prostatic stroma via caspase-3. J Urology. 2004;172:338–44.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maha Othman MD, MSc, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Derman, B., Kwaan, H., Elbatarny, M., Othman, M. (2015). Nitric Oxide, Coagulation and Cancer. In: Bonavida, B. (eds) Nitric Oxide and Cancer: Pathogenesis and Therapy. Springer, Cham. https://doi.org/10.1007/978-3-319-13611-0_17

Download citation

Publish with us

Policies and ethics