Skip to main content

Regulation of Cell Death Signaling by Nitric Oxide in Cancer Cells

  • Chapter
  • First Online:
  • 739 Accesses

Abstract

Nitric oxide (NO) is a lipophillic, highly diffusible, and short-lived physiological messenger which regulates a variety of important physiological responses, including vasodilation, respiration, cell migration, immune response and apoptosis. NO is synthesized by three differentially gene-encoded NOS in mammals: neuronal NOS (nNOS or NOS-1), inducible NOS (iNOS or NOS-2) and endothelial NOS (eNOS or NOS-3). NO may exert its cellular action by cGMP-dependent as well as by cGMP-independent pathways that include post-translational modifications in cysteine (S-nitrosylation), tyrosine nitration and S-nitrosoglutathione-derived compounds. NO sensitizes tumor cells to chemotherapeutic compounds. The antitumoral activity of NO may be related to the regulation of the stress response mediated by the hypoxia inducible factor-1 (HIF-1) and p53 that generally lead to growth arrest, apoptosis or adaptation. In addition, the post-translational regulation of cell death receptors modulates the apoptotic pathways.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

BH4:

(6R)-5,6,7,8-tetrahydrobiopterin

bZip:

Basic Leucine Zipper

CaM:

Calmodulin

DR:

Death Receptor

ECM:

Extracellular Matrix

eNOS (NOS-3):

Endothelial NOS

GTN:

Glyceryl Trinitrate

GSH:

Reduced Glutathione

GSNO:

S-nitrosoglutathione

haeme:

Iron Protoporphyrin IX

HIF-1:

Hypoxia Inducible Factor-1

iNOS:

Inducible NOS

MAPK:

Mitogen-Activated Protein Kinases

nNOS (NOS-1):

Neuronal NOS

NO:

Nitric Oxide

NOS:

Nitric Oxide Synthases

O2•− :

Anion Superoxide

PI3K:

Phosphatidylinositol-3 kinase

PSA:

Prostate-Specific Antigen

sGC:

Soluble Guanylate Cyclase

TRAIL:

Tumor Necrosis Factor-Related Apoptosis Inducing Ligand

TRAIL-R1:

TRAIL Receptor 1

TRAIL-R2:

TRAIL Receptor 2

TNF-R1:

Tumor Necrosis Factor Receptor Type 1

References

  1. Lancaster JR Jr. A tutorial on the diffusibility and reactivity of free nitric oxide. Nitric Oxide. 1997;1:18–30.

    Article  CAS  PubMed  Google Scholar 

  2. Bredt DS, Hwang PM, Snyder SH. Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature. 1990;347:768–70.

    Article  CAS  PubMed  Google Scholar 

  3. Bredt DS, Snyder SH. Nitric oxide mediates glutamate-linked enhancement of cGMP levels in the cerebellum. Proc Natl Acad Sci U S A. 1989;86:9030–3.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Bredt DS, Snyder SH. Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc Natl Acad Sci U S A. 1990;87:682–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Grasemann H, Drazen JM, Deykin A, Israel E, De Sanctis GT, Pillari A, Yandava CH. Simple tandem repeat polymorphisms in the neuronal nitric oxide synthase gene in different ethnic populations. Hum Hered. 1999;49:139–41.

    Article  CAS  PubMed  Google Scholar 

  6. Raghuram N, Fortenberry JD, Owens ML, Brown LA. Effects of exogenous nitric oxide and hyperoxia on lung fibroblast viability and DNA fragmentation. Biochem Biophys Res Commun. 1999;262:685–91.

    Article  CAS  PubMed  Google Scholar 

  7. Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthases: structure, function and inhibition. Biochem J. 2001;357:593–615.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Feron O, Belhassen L, Kobzik L, Smith TW, Kelly RA, Michel T. Endothelial nitric oxide synthase targeting to caveolae. Specific interactions with caveolin isoforms in cardiac myocytes and endothelial cells. J Biol Chem. 1996;271:22810–4.

    Article  CAS  PubMed  Google Scholar 

  9. Boo YC, Kim HJ, Song H, Fulton D, Sessa W, Jo H. Coordinated regulation of endothelial nitric oxide synthase activity by phosphorylation and subcellular localization. Free Radic Biol Med. 2006;41:144–53.

    Article  CAS  PubMed  Google Scholar 

  10. Iwakiri Y, Satoh A, Chatterjee S, Toomre DK, Chalouni CM, Fulton D, Groszmann RJ, Shah VH, Sessa WC. Nitric oxide synthase generates nitric oxide locally to regulate compartmentalized protein S-nitrosylation and protein trafficking. Proc Natl Acad Sci U S A. 2006;103:19777–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Oess S, Icking A, Fulton D, Govers R, Muller-Esterl W. Subcellular targeting and trafficking of nitric oxide synthases. Biochem J. 2006;396:401–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Stamler JS. Redox signaling: nitrosylation and related target interactions of nitric oxide. Cell. 1994;78:931–6.

    Article  CAS  PubMed  Google Scholar 

  13. Schmidt HH, Walter U. NO at work. Cell. 1994;78:919–25.

    Article  CAS  PubMed  Google Scholar 

  14. Friebe A, Koesling D. Regulation of nitric oxide-sensitive guanylyl cyclase. Circ Res. 2003;93:96–105.

    Article  CAS  PubMed  Google Scholar 

  15. Stamler JS, Hausladen A. Oxidative modifications in nitrosative stress. Nat Struct Biol. 1998;5:247–9.

    Article  CAS  PubMed  Google Scholar 

  16. Rall TW, Sutherland EW. Formation of a cyclic adenine ribonucleotide by tissue particles. J Biol Chem. 1958;232:1065–76.

    CAS  PubMed  Google Scholar 

  17. Lohmann SM, Vaandrager AB, Smolenski A, Walter U, De Jonge HR. Distinct and specific functions of cGMP-dependent protein kinases. Trends Biochem Sci. 1997;22:307–12.

    Article  CAS  PubMed  Google Scholar 

  18. Degerman E, Belfrage P, Manganiello VC. Structure, localization, and regulation of cGMP-inhibited phosphodiesterase (PDE3). J Biol Chem. 1997;272:6823–6.

    Article  CAS  PubMed  Google Scholar 

  19. Houslay MD, Milligan G. Tailoring cAMP-signalling responses through isoform multiplicity. Trends Biochem Sci. 1997;22:217–224.

    Article  CAS  PubMed  Google Scholar 

  20. Zagotta WN, Siegelbaum SA. Structure and function of cyclic nucleotide-gated channels. Annu Rev Neurosci. 1996;19:235–63.

    Article  CAS  PubMed  Google Scholar 

  21. Jaffrey SR, Erdjument-Bromage H, Ferris CD, Tempst P, Snyder SH. Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nat Cell Biol. 2001;3:193–7.

    Article  CAS  PubMed  Google Scholar 

  22. Espey MG, Thomas DD, Miranda KM, Wink DA. Focusing of nitric oxide mediated nitrosation and oxidative nitrosylation as a consequence of reaction with superoxide. Proc Natl Acad Sci U S A. 2002;99:11127–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Hess DT, Matsumoto A, Nudelman R, Stamler JS. S-nitrosylation: spectrum and specificity. Nat Cell Biol. 2001;3:E46–49.

    Article  CAS  PubMed  Google Scholar 

  24. Govers R, Oess S. To NO or not to NO: ‘where?’ is the question. Histol Histopathol. 2004;19:585–605.

    CAS  PubMed  Google Scholar 

  25. Kroncke KD, Carlberg C. Inactivation of zinc finger transcription factors provides a mechanism for a gene regulatory role of nitric oxide. FASEB J. 2000;14:166–73.

    CAS  PubMed  Google Scholar 

  26. Bonavida B, Baritaki S, Huerta-Yepez S, Vega MI, Chatterjee D, Yeung K. Novel therapeutic applications of nitric oxide donors in cancer: roles in chemo- and immunosensitization to apoptosis and inhibition of metastases. Nitric Oxide. 2008;19:152–7.

    Article  CAS  PubMed  Google Scholar 

  27. Huerta-Yepez S, Vega M, Jazirehi A, Garban H, Hongo F, Cheng G, Bonavida B. Nitric oxide sensitizes prostate carcinoma cell lines to TRAIL-mediated apoptosis via inactivation of NF-kappa B and inhibition of Bcl-xl expression. Oncogene. 2004;23:4993–5003.

    Article  CAS  PubMed  Google Scholar 

  28. Jazirehi AR, Bonavida B. Cellular and molecular signal transduction pathways modulated by rituximab (rituxan, anti-CD20 mAb) in non-Hodgkin’s lymphoma: implications in chemosensitization and therapeutic intervention. Oncogene. 2005;24:2121–43.

    Article  CAS  PubMed  Google Scholar 

  29. Marshall HE, Merchant K, Stamler JS. Nitrosation and oxidation in the regulation of gene expression. FASEB J. 2000;14:1889–900.

    Article  CAS  PubMed  Google Scholar 

  30. Abate C, Patel L, Rauscher FJ, 3rd, Curran T. Redox regulation of fos and jun DNA-binding activity in vitro. Science. 1990;249:1157–61.

    Article  CAS  PubMed  Google Scholar 

  31. Nikitovic D, Holmgren A, Spyrou G. Inhibition of AP-1 DNA binding by nitric oxide involving conserved cysteine residues in Jun and Fos. Biochem Biophys Res Commun. 1998;242:109–12.

    Article  CAS  PubMed  Google Scholar 

  32. Klatt P, Molina EP, Lamas S. Nitric oxide inhibits c-Jun DNA binding by specifically targeted S-glutathionylation. J Biol Chem. 1999;274:15857–64.

    Article  CAS  PubMed  Google Scholar 

  33. Rainwater R, Parks D, Anderson ME, Tegtmeyer P, Mann K. Role of cysteine residues in regulation of p53 function. Mol Cell Biol. 1995;15:3892–903.

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Ema M, Hirota K, Mimura J, Abe H, Yodoi J, Sogawa K, Poellinger L, Fujii-Kuriyama Y. Molecular mechanisms of transcription activation by HLF and HIF1alpha in response to hypoxia: their stabilization and redox signal-induced interaction with CBP/p300. EMBO J. 1999;18:1905–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Radi R, Beckman JS, Bush KM, Freeman BA. Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J Biol Chem. 1991;266:4244–50.

    CAS  PubMed  Google Scholar 

  36. Hanafy KA, Krumenacker JS, Murad F. NO, nitrotyrosine, and cyclic GMP in signal transduction. Med Sci Monit. 2001;7:801–19.

    CAS  PubMed  Google Scholar 

  37. Zou MH, Hou XY, Shi CM, Nagata D, Walsh K, Cohen RA. Modulation by peroxynitrite of Akt- and AMP-activated kinase-dependent Ser1179 phosphorylation of endothelial nitric oxide synthase. J Biol Chem. 2002;277:32552–7.

    Article  CAS  PubMed  Google Scholar 

  38. Kuzkaya N, Weissmann N, Harrison DG, Dikalov S. Interactions of peroxynitrite, tetrahydrobiopterin, ascorbic acid, and thiols: implications for uncoupling endothelial nitric-oxide synthase. J Biol Chem. 2003;278:22546–54.

    Article  CAS  PubMed  Google Scholar 

  39. Ischiropoulos H. Biological selectivity and functional aspects of protein tyrosine nitration. Biochem Biophys Res Commun. 2003;305:776–83.

    Article  CAS  PubMed  Google Scholar 

  40. Lander HM. An essential role for free radicals and derived species in signal transduction. FASEB J. 1997;11:118–24.

    CAS  PubMed  Google Scholar 

  41. Lala PK, Chakraborty C. Role of nitric oxide in carcinogenesis and tumor progression. Lancet Oncol. 2001;2:149–56.

    Article  CAS  PubMed  Google Scholar 

  42. Fukumura D, Kashiwagi S, Jain RK. The role of nitric oxide in tumor progression. Nat Rev Cancer. 2006;6:521–34.

    Article  CAS  PubMed  Google Scholar 

  43. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.

    Article  CAS  PubMed  Google Scholar 

  44. Bissell MJ, Radisky D. Putting tumors in context. Nat Rev Cancer. 2001;1:46–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer. 2002;2:161–74.

    Article  CAS  PubMed  Google Scholar 

  46. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420:860–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Hofseth LJ, Hussain SP, Wogan GN, Harris CC. Nitric oxide in cancer and chemoprevention. Free Radic Biol Med. 2003;34:955–68.

    Article  CAS  PubMed  Google Scholar 

  48. Crowell JA, Steele VE, Sigman CC, Fay JR. Is inducible nitric oxide synthase a target for chemoprevention? Mol Cancer Ther. 2003;2:815–23.

    CAS  PubMed  Google Scholar 

  49. Ambs S, Merriam WG, Ogunfusika MO, Bennett WP, Ishibe N, Hussain SP, Tzeng EE, Geller DA, Billiar TR, Harris CC. p53 and vascular endothelial growth factor regulate tumor growth of NOS2-expressing human carcinoma cells. Nat Med. 1998;4:1371–6.

    Article  CAS  PubMed  Google Scholar 

  50. Zhang J, Dawson VL, Dawson TM, Snyder SH. Nitric oxide activation of poly(ADP-ribose) synthetase in neurotoxicity. Science. 1994;263:687–9.

    Article  CAS  PubMed  Google Scholar 

  51. Pervin S, Singh R, Chaudhuri G. Nitric oxide-induced cytostasis and cell cycle arrest of a human breast cancer cell line (MDA-MB-231): potential role of cyclin D1. Proc Natl Acad Sci U S A. 2001;98:3583–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Melino G, Bernassola F, Knight RA, Corasaniti MT, Nistico G, Finazzi-Agro A. S-nitrosylation regulates apoptosis. Nature. 1997;388:432–3.

    Article  CAS  PubMed  Google Scholar 

  53. Jaiswal M, LaRusso NF, Nishioka N, Nakabeppu Y, Gores GJ. Human Ogg1, a protein involved in the repair of 8-oxoguanine, is inhibited by nitric oxide. Cancer Res. 2001;61:6388–93.

    CAS  PubMed  Google Scholar 

  54. Laval F, Wink DA. Inhibition by nitric oxide of the repair protein, O6-methylguanine-DNA-methyltransferase. Carcinogenesis. 1994;15:443–7.

    Article  CAS  PubMed  Google Scholar 

  55. Wink DA, Cook JA, Christodoulou D, Krishna MC, Pacelli R, Kim S, DeGraff W, Gamson J, Vodovotz Y, Russo A, Mitchell JB. Nitric oxide and some nitric oxide donor compounds enhance the cytotoxicity of cisplatin. Nitric Oxide. 1997;1:88–94.

    Article  CAS  PubMed  Google Scholar 

  56. Cook JA, Krishna MC, Pacelli R, DeGraff W, Liebmann J, Mitchell JB, Russo A, Wink DA. Nitric oxide enhancement of melphalan-induced cytotoxicity. Br J Cancer. 1997;76:325–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Vaupel P, Mayer A. Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev. 2007;26:225–39.

    Article  CAS  PubMed  Google Scholar 

  58. Vaupel P, Mayer A, Hockel M. Tumor hypoxia and malignant progression. Methods Enzymol. 2004;381:335–54.

    CAS  PubMed  Google Scholar 

  59. Vaupel P. The role of hypoxia-induced factors in tumor progression. Oncologist. 2004;9(Suppl 5):10–7.

    Article  CAS  PubMed  Google Scholar 

  60. Vaupel P, Thews O, Hoeckel M. Treatment resistance of solid tumors: role of hypoxia and anemia. Med Oncol. 2001;18:243–59.

    Article  CAS  PubMed  Google Scholar 

  61. Jenkins DC, Charles IG, Thomsen LL, Moss DW, Holmes LS, Baylis SA, Rhodes P, Westmore K, Emson PC, Moncada S. Roles of nitric oxide in tumor growth. Proc Natl Acad Sci U S A. 1995;92:4392–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Chin K, Kurashima Y, Ogura T, Tajiri H, Yoshida S, Esumi H. Induction of vascular endothelial growth factor by nitric oxide in human glioblastoma and hepatocellular carcinoma cells. Oncogene. 1997;15:437–42.

    Article  CAS  PubMed  Google Scholar 

  63. Frank S, Stallmeyer B, Kampfer H, Schaffner C, Pfeilschifter J. Differential regulation of vascular endothelial growth factor and its receptor fms-like-tyrosine kinase is mediated by nitric oxide in rat renal mesangial cells. Biochem J. 1999;338(Pt 2):367–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Jadeski LC, Hum KO, Chakraborty C, Lala PK. Nitric oxide promotes murine mammary tumor growth and metastasis by stimulating tumor cell migration, invasiveness and angiogenesis. Int J Cancer. 2000;86:30–9.

    Article  CAS  PubMed  Google Scholar 

  65. Yang HT, Yan Z, Abraham JA, Terjung RL. VEGF(121)- and bFGF-induced increase in collateral blood flow requires normal nitric oxide production. Am J Physiol Heart Circ Physiol. 2001;280:H1097–104.

    CAS  PubMed  Google Scholar 

  66. Thomsen LL, Lawton FG, Knowles RG, Beesley JE, Riveros-Moreno V, Moncada S. Nitric oxide synthase activity in human gynecological cancer. Cancer Res. 1994;54:1352–4.

    CAS  PubMed  Google Scholar 

  67. Cobbs CS, Brenman JE, Aldape KD, Bredt DS, Israel MA. Expression of nitric oxide synthase in human central nervous system tumors. Cancer Res. 1995;55:727–30.

    CAS  PubMed  Google Scholar 

  68. Gallo O, Masini E, Morbidelli L, Franchi A, Fini-Storchi I, Vergari WA, Ziche M. Role of nitric oxide in angiogenesis and tumor progression in head and neck cancer. J Natl Cancer Inst. 1998;90:587–96.

    Article  CAS  PubMed  Google Scholar 

  69. Kojima M, Morisaki T, Tsukahara Y, Uchiyama A, Matsunari Y, Mibu R, Tanaka M. Nitric oxide synthase expression and nitric oxide production in human colon carcinoma tissue. J Surg Oncol. 1999;70:222–9.

    Article  CAS  PubMed  Google Scholar 

  70. Swana HS, Smith SD, Perrotta PL, Saito N, Wheeler MA, Weiss RM. Inducible nitric oxide synthase with transitional cell carcinoma of the bladder. J Urol. 1999;161:630–4.

    Article  CAS  PubMed  Google Scholar 

  71. Marrogi AJ, Travis WD, Welsh JA, Khan MA, Rahim H, Tazelaar H, Pairolero P, Trastek V, Jett J, Caporaso NE, Liotta LA, Harris CC. Nitric oxide synthase, cyclooxygenase 2, and vascular endothelial growth factor in the angiogenesis of non-small cell lung carcinoma. Clin Cancer Res. 2000;6:4739–44.

    CAS  PubMed  Google Scholar 

  72. Vakkala M, Kahlos K, Lakari E, Paakko P, Kinnula V, Soini Y. Inducible nitric oxide synthase expression, apoptosis, and angiogenesis in in situ and invasive breast carcinomas. Clin Cancer Res. 2000;6:2408–16.

    CAS  PubMed  Google Scholar 

  73. Aaltoma SH, Lipponen PK, Kosma VM. Inducible nitric oxide synthase (iNOS) expression and its prognostic value in prostate cancer. Anticancer Res. 2001;21:3101–6.

    CAS  PubMed  Google Scholar 

  74. Uotila P, Valve E, Martikainen P, Nevalainen M, Nurmi M, Harkonen P. Increased expression of cyclooxygenase-2 and nitric oxide synthase-2 in human prostate cancer. Urol Res. 2001;29:23–8.

    Article  CAS  PubMed  Google Scholar 

  75. Massi D, Franchi A, Sardi I, Magnelli L, Paglierani M, Borgognoni L, Maria Reali U, Santucci M. Inducible nitric oxide synthase expression in benign and malignant cutaneous melanocytic lesions. J Pathol. 2001;194:194–200.

    Article  CAS  PubMed  Google Scholar 

  76. Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A. 1995;92:5510–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Hirota K. Hypoxia-inducible factor 1, a master transcription factor of cellular hypoxic gene expression. J Anesth. 2002;16:150–9.

    Article  PubMed  Google Scholar 

  78. Leek RD, Stratford I, Harris AL. The role of hypoxia-inducible factor-1 in three-dimensional tumor growth, apoptosis, and regulation by the insulin-signaling pathway. Cancer Res. 2005;65:4147–52.

    Article  CAS  PubMed  Google Scholar 

  79. Takabuchi S, Hirota K, Nishi K, Oda S, Oda T, Shingu K, Takabayashi A, Adachi T, Semenza GL, Fukuda K. The inhibitory effect of sodium nitroprusside on HIF-1 activation is not dependent on nitric oxide-soluble guanylyl cyclase pathway. Biochem Biophys Res Commun. 2004;324:417–23.

    Article  CAS  PubMed  Google Scholar 

  80. Yasuda H, Nakayama K, Watanabe M, Suzuki S, Fuji H, Okinaga S, Kanda A, Zayasu K, Sasaki T, Asada M, Suzuki T, Yoshida M, Yamanda S, Inoue D, Kaneta T, Kondo T, Takai Y, Sasaki H, Yanagihara K, Yamaya M. Nitroglycerin treatment may enhance chemosensitivity to docetaxel and carboplatin in patients with lung adenocarcinoma. Clin Cancer Res. 2006;12:6748–57.

    Article  CAS  PubMed  Google Scholar 

  81. Siemens DR, Heaton JP, Adams MA, Kawakami J, Graham CH. Phase II study of nitric oxide donor for men with increasing prostate-specific antigen level after surgery or radiotherapy for prostate cancer. Urology. 2009;74:878–83.

    Article  PubMed  Google Scholar 

  82. Kurose I, Miura S, Fukumura D, Yonei Y, Saito H, Tada S, Suematsu M, Tsuchiya M. Nitric oxide mediates Kupffer cell-induced reduction of mitochondrial energization in hepatoma cells: a comparison with oxidative burst. Cancer Res. 1993;53:2676–82.

    CAS  PubMed  Google Scholar 

  83. Abou-Elella AM, Siendones E, Padillo J, Montero JL, De la Mata M, Muntane Relat J. Tumor necrosis factor-alpha and nitric oxide mediate apoptosis by D-galactosamine in a primary culture of rat hepatocytes: exacerbation of cell death by cocultured Kupffer cells. Can J Gastroenterol. 2002;16:791–9.

    PubMed  Google Scholar 

  84. Xu W, Liu L, Charles IG. Microencapsulated iNOS-expressing cells cause tumor suppression in mice. FASEB J. 2002;16:213–5.

    CAS  PubMed  Google Scholar 

  85. Soler MN, Bobe P, Benihoud K, Lemaire G, Roos BA, Lausson S. Gene therapy of rat medullary thyroid cancer by naked nitric oxide synthase II DNA injection. J Gene Med. 2000;2:344–52.

    Article  CAS  PubMed  Google Scholar 

  86. Aguilar-Melero P, Ferrin G, Muntane J. Effects of nitric oxide synthase-3 overexpression on post-translational modifications and cell survival in HepG2 cells. J Proteomics. 2012;75:740–55.

    Article  CAS  PubMed  Google Scholar 

  87. Gonzalez R, Ferrin G, Aguilar-Melero P, Ranchal I, Linares CI, Bello RI, De la Mata M, Gogvadze V, Barcena JA, Alamo JM, Orrenius S, Padillo FJ, Zhivotovsky B, Muntane J. Targeting hepatoma using nitric oxide donor strategies. Antioxid Redox Signal. 2013;18:491–506.

    Article  CAS  PubMed  Google Scholar 

  88. Leon-Bollotte L, Subramaniam S, Cauvard O, Plenchette-Colas S, Paul C, Godard C, Martinez-Ruiz A, Legembre P, Jeannin JF, Bettaieb A. S-nitrosylation of the death receptor fas promotes fas ligand-mediated apoptosis in cancer cells. Gastroenterology. 2011;140:2009–18, 2018.e1–4.

    Article  CAS  PubMed  Google Scholar 

  89. Seitz SJ, Schleithoff ES, Koch A, Schuster A, Teufel A, Staib F, Stremmel W, Melino G, Krammer PH, Schilling T, Muller M. Chemotherapy-induced apoptosis in hepatocellular carcinoma involves the p53 family and is mediated via the extrinsic and the intrinsic pathway. Int J Cancer. 2010;126:2049–66.

    CAS  PubMed  Google Scholar 

  90. Gressner O, Schilling T, Lorenz K, Schulze Schleithoff E, Koch A, Schulze-Bergkamen H, Lena AM, Candi E, Terrinoni A, Catani MV, Oren M, Melino G, Krammer PH, Stremmel W, Muller M. TAp63alpha induces apoptosis by activating signaling via death receptors and mitochondria. EMBO J. 2005;24:2458–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Biomedical Research Network Center for Liver and Digestive Diseases (CIBERehd) founded by “Carlos III” Health Institute for its support.

Conflict Statement

No potential conflicts of interest were disclosed.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Muntané, J. et al. (2015). Regulation of Cell Death Signaling by Nitric Oxide in Cancer Cells. In: Bonavida, B. (eds) Nitric Oxide and Cancer: Pathogenesis and Therapy. Springer, Cham. https://doi.org/10.1007/978-3-319-13611-0_15

Download citation

Publish with us

Policies and ethics