Skip to main content

Emerging Role of NO-Mediated Therapeutics

  • Chapter
  • First Online:
  • 756 Accesses

Abstract

The free radical nitric oxide (NO) is fundamental in the neoplastic environment. At low concentrations, the gasotransmitter manifests a pathological phenotype characterized by uncontrolled proliferation, increased invasion and metastasis, stimulation of angiogenesis and inhibited apoptosis. Paradoxically, at superphysiological concentrations, a less aggressive phenotype exists, where tumor cells are less likely to metastasize, angiogenesis is inhibited, and apoptotic machinery operates appropriately. This dichotomy of response to NO has created a divergence in the field, with some researchers set on interfering with NO signaling in cancer cells, and others endeavoring to boost it. The purpose of this chapter is to examine the activity of NO in oncology, and to highlight the recent advances in NO-mediated therapeutics. We have focused on emerging strategies that act either by promotion of or interference with NO signaling, including genetic therapies, and have largely limited topics discussed to discoveries from the past 18 months. Attention is paid to agents that have been or are being assessed at clinical trial, and the chapter concludes with a cautionary note on the appropriate use of NO-mediated therapies in oncology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

CMV:

Cytomegalovirus

DMBA:

7,12-dimethylbenz[a]anthracene

DT-D:

NAD(P)H:(quinone-acceptor) oxidoreductase

EGF(R):

Epidermal growth factor (receptor)

ELIP:

Echogenic liposomes

ER:

Estrogen receptor

FOLFIRI:

Folinic acid, Fluorouracil, Irinotecan

GST:

Glutathione S-transferase

HNO:

Nitroxyl

HUVEC:

Human umbilical vein endothelial cell

IR:

Ionizing radiation

L-NAME:

L-NG-Nitroarginine methyl ester

MLF2:

Myeloid leukemia factor 2

MMP:

Matrix metalloproteinase

NO(S):

Nitric oxide (synthase)

NONOates:

Diazeniumdiolates

NSAID:

Non-steroidal anti-inflammatory drug

NSCLC:

Non-small cell lung cancer

P-gp:

P-glycoprotein

PARP:

Poly(ADP)ribose polymerase

Pb:

Pheophorbide

PLGA:

Poly(lactic-co-glycolic acid)

PZP:

Polyethylene glycol-conjugated zinc protoporphyrin IX

ROS/RNS:

Reactive oxygen/nitrogen species

RPL39:

Ribosomal protein L39

TIMP:

Tissue inhibitor of metalloproteinase

TPP:

Triphenylphosphonium

TRAIL:

Tumor necrosis factor-related apoptosis-inducing ligand

DEA/NO:

Diethylamine/NO

DETA/NO:

Diethylenetriamine/NO

GLYN:

Glycidyl nitrate

GSNO:

S-nitrosoglutathione

GTN:

Glyceryl trinitrate

INDQ/NO:

Indolequinone-diazeniumdiolate/NO

IPA/NO:

Isopropylamine/NO

JS-K:

(O2-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1- yl]diazen-1-ium-1,2-diolate)

MNBI:

2-mercapto-5-nitro benzimidazole

NOSH:

Nitric oxide/hydrogen sulfide donor

PABA/NO:

p-aminobenzoic acid/NO

RRx-001:

1-bromoacetyl-3,3-dinitroazetidine (ABDNAZ)

SIN-1:

3-morpholinosydnonimine

SNAP:

S-nitroso- N-acetylpenicillamine

SNO(-HSA):

S-nitrosothiol (-human serum albumin)

SNP:

Sodium nitroprusside

References

  1. Huerta S, Chilka S, Bonavida B. Nitric oxide donors: novel cancer therapeutics (review). Int J Oncol. 2008;33:909–27.

    CAS  PubMed  Google Scholar 

  2. Heinrich TA, da Silva RS, Miranda KM, Switzer CH, Wink DA, Fukuto JM. Biological nitric oxide signalling: chemistry and terminology. Br J Pharmacol. 2013;169:1417–29.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Singh S, Gupta AK. Nitric oxide: role in tumour biology and iNOS/NO-based anticancer therapies. Cancer Chemother Pharmacol. 2011;67:1211–24.

    Article  CAS  PubMed  Google Scholar 

  4. Caneba CA, Yang L, Baddour J, Curtis R, Win J, Hartig S, Marini J, Nagrath D. Nitric oxide is a positive regulator of the Warburg effect in ovarian cancer cells. Cell Death Dis. 2014;5:e1302.

    Article  CAS  PubMed  Google Scholar 

  5. Miller MR, Megson IL. Recent developments in nitric oxide donor drugs. Br J Pharmacol. 2007;151:305–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Yasuda H. Solid tumor physiology and hypoxia-induced chemo/radio-resistance: novel strategy for cancer therapy: nitric oxide donor as a therapeutic enhancer. Nitric Oxide. 2008;19:205–16.

    Article  CAS  PubMed  Google Scholar 

  7. Seki T, Fang J, Maeda H. Enhanced delivery of macromolecular antitumor drugs to tumors by nitroglycerin application. Cancer Sci. 2009;100:2426–30.

    Article  CAS  PubMed  Google Scholar 

  8. Yasuda H, Yamaya M, Nakayama K, Sasaki T, Ebihara S, Kanda A, Asada M, Inoue D, Suzuki T, Okazaki T, Takahashi H, Yoshida M, Kaneta T, Ishizawa K, Yamanda S, Tomita N, Yamasaki M, Kikuchi A, Kubo H, Sasaki H. Randomized phase II trial comparing nitroglycerin plus vinorelbine and cisplatin with vinorelbine and cisplatin alone in previously untreated stage IIIB/IV non-small-cell lung cancer. J Clin Oncol. 2006;24:688–94.

    Article  CAS  PubMed  Google Scholar 

  9. Reinmuth N, Meyer A, Hartwigsen D, Schaeper C, Huebner G, Skock-Lober R, Bier A, Gerecke U, Held CP, Reck M. Randomized, double-blind phase II study to compare nitroglycerin plus oral vinorelbine plus cisplatin with oral vinorelbine plus cisplatin alone in patients with stage IIIB/IV non-small cell lung cancer (NSCLC). Lung Cancer. 2014;83:363–8.

    Article  CAS  PubMed  Google Scholar 

  10. Arrieta O, Blake M, de la Mata-Moya MD, Corona F, Turcott J, Orta D, Alexander-Alatorre J, Gallardo-Rincón D. Phase II study. Concurrent chemotherapy and radiotherapy with nitroglycerin in locally advanced non-small cell lung cancer. Radiother Oncol. 2014;111:311–5.

    Article  CAS  PubMed  Google Scholar 

  11. Yasuda H, Nakayama K, Watanabe M, Suzuki S, Fuji H, Okinaga S, Kanda A, Zayasu K, Sasaki T, Asada M, Suzuki T, Yoshida M, Yamanda S, Inoue D, Kaneta T, Kondo T, Takai Y, Sasaki H, Yanagihara K, Yamaya M. Nitroglycerin treatment may enhance chemosensitivity to docetaxel and carboplatin in patients with lung adenocarcinoma. Clin Cancer Res. 2006;12:6748–57.

    Article  CAS  PubMed  Google Scholar 

  12. Siemens DR, Heaton JP, Adams MA, Kawakami J, Graham CH. Phase II study of nitric oxide donor for men with increasing prostate-specific antigen level after surgery or radiotherapy for prostate cancer. Urology. 2009;74:878–83.

    Article  PubMed  Google Scholar 

  13. Yang L, Lan C, Fang Y, Zhang Y, Wang J, Guo J, Wan S, Yang S, Wang R, Fang D. Sodium nitroprusside (SNP) sensitizes human gastric cancer cells to TRAIL-induced apoptosis. Int Immunopharmacol. 2013;17:383–9.

    Article  CAS  PubMed  Google Scholar 

  14. Bonavida B, Baritaki S. Dual role of NO donors in the reversal of tumor cell resistance and EMT: downregulation of the NF-kappaB/Snail/YY1/RKIP circuitry. Nitric Oxide. 2011;24:1–7.

    Article  CAS  PubMed  Google Scholar 

  15. Laschak M, Spindler KD, Schrader AJ, Hessenauer A, Streicher W, Schrader M, Cronauer MV. JS-K, a glutathione/glutathione S-transferase-activated nitric oxide releasing prodrug inhibits androgen receptor and WNT-signaling in prostate cancer cells. BMC Cancer. 2012;12:130.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Kaczmarek MZ, Holland RJ, Lavanier SA, Troxler JA, Fesenkova VI, Hanson CA, Cmarik JL, Saavra JE, Keefer LK, Ruscetti SK. Mechanism of action for the cytotoxic effects of the nitric oxide prodrug JS-K in murine erythroleukemia cells. Leuk Res. 2014;38:377–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Wink DA, Cook JA, Christodoulou D, Krishna MC, Pacelli R, Kim S, DeGraff W, Gamson J, Vodovotz Y, Russo A, Mitchell JB. Nitric oxide and some nitric oxide donor compounds enhance the cytotoxicity of cisplatin. Nitric Oxide. 1997;1:88–94.

    Article  CAS  PubMed  Google Scholar 

  18. Ning S, Bednarski M, Oronsky B, Scicinski J, Knox SJ. Novel nitric oxide generating compound glycidyl nitrate enhances the therapeutic efficacy of chemotherapy and radiotherapy. Biochem Biophys Res Commun. 2014;447:537–42.

    Article  CAS  PubMed  Google Scholar 

  19. Ning S, Bednarski M, Oronsky B, Scicinski J, Saul G, Knox SJ. Dinitroazetidines are a novel class of anticancer agents and hypoxia-activated radiation sensitizers developed from highly energetic materials. Cancer Res. 2012;72:2600–8.

    Article  CAS  PubMed  Google Scholar 

  20. Reid T, Dad S, Korn R, Oronsky B, Knox S, Scicinski J. Two case reports of resensitization to previous chemotherapy with the novel hypoxia-activated hypomethylating anticancer agent RRx-001 in metastatic colorectal cancer patients. Case Rep Oncol. 2014;7:79–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Chegaev K, Riganti C, Lazzarato L, Rolando B, Guglielmo S, Campia I, et al. Nitric oxide donor doxorubicins accumulate into Doxorubicin-resistant human colon cancer cells inducing cytotoxicity. ACS Med Chem Lett. 2011;2:494–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Pedrini I, Gazzano E, Chegaev K, Rolando B, Marengo A, Kopecka J, Fruttero R, Ghigo D, Arpicco S, Riganti C. Liposomal nitrooxy-doxorubicin: one step over caelyx in drug-resistant human cancer cells. Mol Pharm. 2014;11:3068–79.

    Article  CAS  PubMed  Google Scholar 

  23. Riganti C, Miraglia E, Viarisio D, Costamagna C, Pescarmona G, Ghigo D, Bosia A. Nitric oxide reverts the resistance to doxorubicin in human colon cancer cells by inhibiting the drug efflux. Cancer Res. 2005;65:516–25.

    CAS  PubMed  Google Scholar 

  24. Katsumi H, Nishikawa M, Yamashita F, Hashida M. Development of polyethylene glycol-conjugated poly-S-nitrosated serum albumin, a novel S-Nitrosothiol for prolonged delivery of nitric oxide in the blood circulation in vivo. J Pharmacol Exp Ther. 2005;314:1117–24.

    Article  CAS  PubMed  Google Scholar 

  25. Ishima Y, Fang J, Kragh-Hansen U, Yin H, Liao L, Katayama N, Watanabe H, Kai T, Suenaga A, Maeda H, Otagiri M, Maruyama T. Tuning of poly-S-nitrosated human serum albumin as superior antitumor nanomedicine. J Pharm Sci. 2014;103:2184–8.

    Article  CAS  PubMed  Google Scholar 

  26. Maciag AE, Holland RJ, Kim Y, Kumari V, Luthers CE, Sehareen WS, Biswas D, Morris NL, Ji X, Anderson LM, Saavra JE, Keefer LK. Nitric oxide (NO) releasing poly ADP-ribose polymerase 1 (PARP-1) inhibitors targeted to glutathione S-transferase P1-overexpressing cancer cells. J Med Chem. 2014;57:2292–302.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Curtin NJ, Szabo C. Therapeutic applications of PARP inhibitors: anticancer therapy and beyond. Mol Aspects Med. 2013;34:1217–56.

    Article  CAS  PubMed  Google Scholar 

  28. Fu J, Liu L, Huang Z, Lai Y, Ji H, Peng S, Tian J, Zhang Y. Hybrid molecule from O2-(2,4-dinitrophenyl)diazeniumdiolate and oleanolic acid: a glutathione S-transferase pi-activated nitric oxide prodrug with selective anti-human hepatocellular carcinoma activity and improved stability. J Med Chem. 2013;56:4641–55.

    Article  CAS  PubMed  Google Scholar 

  29. Nortcliffe A, Ekstrom AG, Black JR, Ross JA, Habib FK, Botting NP, O’Hagan D. Synthesis and biological evaluation of nitric oxide-donating analogues of sulindac for prostate cancer treatment. Bioorg Med Chem. 2014;22:756–761.

    Article  CAS  PubMed  Google Scholar 

  30. Chaudhary SC, Singh T, Kapur P, Weng Z, Arumugam A, Elmets CA, Kopelovich L, Athar M. Nitric oxide-releasing sulindac is a novel skin cancer chemopreventive agent for UVB-induced photocarcinogenesis. Toxicol Appl Pharmacol. 2013;268:249–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Abdel-Aziz M, Abuo-Rahma G, Beshr EA, Ali TF. New nitric oxide donating 1,2,4-triazole/oxime hybrids: synthesis, investigation of anti-inflammatory, ulceroginic liability and antiproliferative activities. Bioorg Med Chem. 2013;21:3839–49.

    Article  CAS  PubMed  Google Scholar 

  32. Nath N, Liu X, Jacobs L, Kashfi K. Flurbiprofen benzyl nitrate (NBS-242) inhibits the growth of A-431 human epidermoid carcinoma cells and targets beta-catenin. Drug Des Devel Ther. 2013;7:389–96.

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Basudhar D, Bharadwaj G, Cheng RY, Jain S, Shi S, Heinecke JL, Holland RJ, Ridnour LA, Caceres VM, Spadari-Bratfisch RC, Paolocci N, Velázquez-Martínez CA, Wink DA, Miranda KM. Synthesis and chemical and biological comparison of nitroxyl- and nitric oxide-releasing diazeniumdiolate-bas aspirin derivatives. J Med Chem. 2013;56:7804–20.

    Article  CAS  PubMed  Google Scholar 

  34. Kashfi K, Olson KR. Biology and therapeutic potential of hydrogen sulfide and hydrogen sulfide-releasing chimeras. Biochem Pharmacol. 2013;85:689–703.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Kodela R, Chattopadhyay M, Kashfi K. Synthesis and biological activity of NOSH-naproxen (AVT-219) and NOSH-sulindac (AVT-18 A) as potent anti-inflammatory agents with chemotherapeutic potential. Medchemcomm. 2013;4:10.1039/C3MD00185G.

    Article  PubMed Central  CAS  Google Scholar 

  36. Coulter JA, Jain S, Butterworth KT, Taggart LE, Dickson GR, McMahon SJ, et al. Cell type-dependent uptake, localization, and cytotoxicity of 1.9 nm gold nanoparticles. Int J Nanomedicine. 2012;7:2673–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Sudhesh P, Tamilarasan K, Arumugam P, Berchmans S. Nitric oxide releasing photoresponsive nanohybrids as excellent therapeutic agent for cervical cancer cell lines. ACS Appl Mater Interfaces. 2013;5:8263–6.

    Article  CAS  PubMed  Google Scholar 

  38. Xu J, Zeng F, Wu H, Hu C, Yu C, Wu S. Preparation of a mitochondria-targeted and no-releasing nanoplatform and its enhanced pro-apoptotic effect on cancer cells. Small. 2014;10:3750–60.

    Article  CAS  PubMed  Google Scholar 

  39. Lee SY, Rim Y, McPherson DD, Huang SL, Kim H. A novel liposomal nanomedicine for nitric oxide delivery and breast cancer treatment. Biomed Mater Eng. 2014;24:61–7.

    CAS  PubMed  Google Scholar 

  40. Kaur I, Terrazas M, Kosak KM, Kern SE, Boucher KM, Shami PJ. Cellular distribution studies of the nitric oxide-generating antineoplastic prodrug O(2) -(2,4-dinitrophenyl)1-((4-ethoxycarbonyl)piperazin-1-yl)diazen-1-ium-1,2-diolate formulated in Pluronic P123 micelles. J Pharm Pharmacol. 2013;65:1329–36.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Gomes AJ, Espreafico EM, Tfouni E. trans-[Ru(NO)Cl(cyclam)](PF6)2 and [Ru(NO)(Hedta)] incorporated in PLGA nanoparticles for the delivery of nitric oxide to B16-F10 cells: cytotoxicity and phototoxicity. Mol Pharm. 2013;10:3544–54.

    CAS  PubMed  Google Scholar 

  42. Duong HT, Kamarudin ZM, Erlich RB, Li Y, Jones MW, Kavallaris M, Boyer C, Davis TP. Intracellular nitric oxide delivery from stable NO-polymeric nanoparticle carriers. Chem Commun (Camb). 2013;49:4190–2.

    Article  CAS  Google Scholar 

  43. Fraix A, Kandoth N, Manet I, Cardile V, Graziano AC, Gref R, Sortino S. An engineered nanoplatform for bimodal anticancer phototherapy with dual-color fluorescence detection of sensitizers. Chem Commun (Camb). 2013;49:4459–61.

    Article  CAS  Google Scholar 

  44. Heinrich TA, Tedesco AC, Fukuto JM, da Silva RS. Production of reactive oxygen and nitrogen species by light irradiation of a nitrosyl phthalocyanine ruthenium complex as a strategy for cancer treatment. Dalton Trans. 2014;43:4021–5.

    Article  CAS  PubMed  Google Scholar 

  45. Holland RJ, Paulisch R, Cao Z, Keefer LK, Saavedra JE, Donzelli S. Enzymatic generation of the NO/HNO-releasing IPA/NO anion at controlled rates in physiological media using beta-galactosidase. Nitric Oxide. 2013;35:131–6.

    Article  CAS  PubMed  Google Scholar 

  46. Sharma K, Sengupta K, Chakrapani H. Nitroreductase-activated nitric oxide (NO) prodrugs. Bioorg Med Chem Lett. 2013;23:5964–7.

    Article  CAS  PubMed  Google Scholar 

  47. Han C, Huang Z, Zheng C, Wan L, Lai Y, Peng S, Ding K, Ji H, Zhang Y. Nitric oxide donating anilinopyrimidines: synthesis and biological evaluation as EGFR inhibitors. Eur J Med Chem. 2013;66:82–90.

    Article  CAS  PubMed  Google Scholar 

  48. Danson S, Ward TH, Butler J, Ranson M. DT-diaphorase: a target for new anticancer drugs. Cancer Treat Rev. 2004;30:437–49.

    Article  CAS  PubMed  Google Scholar 

  49. Sharma K, Iyer A, Sengupta K, Chakrapani H. INDQ/NO, a bioreductively activated nitric oxide prodrug. Org Lett. 2013;15:2636–9.

    Article  CAS  PubMed  Google Scholar 

  50. Esmaeili MA, Farimani MM, Kiaei M. Anticancer effect of calycopterin via PI3K/Akt and MAPK signaling pathways, ROS-mediated pathway and mitochondrial dysfunction in hepatoblastoma cancer (HepG2) cells. Mol Cell Biochem. 2014;397(1-2):17-31.

    Google Scholar 

  51. Pandurangan AK, Kumar SA, Dharmalingam P, Ganapasam S. Luteolin, a bioflavonoid inhibits azoxymethane-induced colon carcinogenesis: Involvement of iNOS and COX-2. Pharmacogn Mag. 2014;10:S306–10.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Tsai ML, Chiou YS, Chiou LY, Ho CT, Pan MH. Garcinol suppresses inflammation-associated colon carcinogenesis in mice. Mol Nutr Food Res. 2014;58:1820–9.

    Article  CAS  PubMed  Google Scholar 

  53. Kotamraju S, Williams CL, Kalyanaraman B. Statin-induced breast cancer cell death: role of inducible nitric oxide and arginase-dependent pathways. Cancer Res. 2007;67:7386–94.

    Article  CAS  PubMed  Google Scholar 

  54. Kanugula AK, Gollavilli PN, Vasamsetti SB, Karnewar S, Gopoju R, Ummanni R, Kotamraju S. Statin-induced inhibition of breast cancer proliferation and invasion involves attenuation of iron transport: intermediacy of nitric oxide and antioxidant defence mechanisms. FEBS J. 2014;281:3719–38.

    Article  CAS  PubMed  Google Scholar 

  55. Sattari M, Pazhang Y, Imani M. Calprotectin induces cell death in human prostate cancer cell (LNCaP) through survivin protein alteration. Cell Biol Int. 2014. doi: 10.1002/cbin.10328. [Epub ahead of print].

    Google Scholar 

  56. Nenu I, Popescu T, Aldea MD, Craciun L, Olteanu D, Tatomir C, Bolfa P, Ion RM, Muresan A, Filip AG. Metformin associated with photodynamic therapy—a novel oncological direction. J Photochem Photobiol B. 2014;138:80–91.

    Article  CAS  PubMed  Google Scholar 

  57. Rapozzi V, Della Pietra E, Zorzet S, Zacchigna M, Bonavida B, Xodo LE. Nitric oxide-mediated activity in anti-cancer photodynamic therapy. Nitric Oxide. 2013;30:26–35.

    Article  CAS  PubMed  Google Scholar 

  58. Klug F, Prakash H, Huber PE, Seibel T, Bender N, Halama N, Pfirschke C, Voss RH, Timke C, Umansky L, Klapproth K, Schäkel K, Garbi N, Jäger D, Weitz J, Schmitz-Winnenthal H, Hämmerling GJ, Beckhove P. Low-dose irradiation programs macrophage differentiation to an iNOS(+)/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell. 2013;24:589–602.

    Article  CAS  PubMed  Google Scholar 

  59. Bulut AS, Erden E, Sak SD, Doruk H, Kursun N, Dincol D. Significance of inducible nitric oxide synthase expression in benign and malignant breast epithelium: an immunohistochemical study of 151 cases. Virchows Arch. 2005;447:24–30.

    Article  CAS  PubMed  Google Scholar 

  60. Vakkala M, Kahlos K, Lakari E, Paakko P, Kinnula V, Soini Y. Inducible nitric oxide synthase expression, apoptosis, and angiogenesis in in situ and invasive breast carcinomas. Clin Cancer Res. 2000;6:2408–16.

    CAS  PubMed  Google Scholar 

  61. Tschugguel W, Schneeberger C, Unfried G, Czerwenka K, Weninger W, Mildner M, Gruber DM, Sator MO, Waldhör T, Huber JC. Expression of inducible nitric oxide synthase in human breast cancer depends on tumor grade. Breast Cancer Res Treat. 1999;56:145–51.

    Article  CAS  PubMed  Google Scholar 

  62. Glynn SA, Boersma BJ, Dorsey TH, Yi M, Yfantis HG, Ridnour LA, Martin DN, Switzer CH, Hudson RS, Wink DA, Lee DH, Stephens RM, Ambs S. Increased NOS2 predicts poor survival in estrogen receptor-negative breast cancer patients. J Clin Invest. 2010;120:3843–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Bian K, Ghassemi F, Sotolongo A, Siu A, Shauger L, Kots A, Murad F. NOS-2 signaling and cancer therapy. IUBMB Life. 2012;64:676–83.

    Article  CAS  PubMed  Google Scholar 

  64. Chen YF, Jiang XZ, He LY, Tang YX, Long Z. Transfection of iNOS suppresses the growth of androgen-independent prostate cancer DU145 cells. Zhonghua Nan Ke Xue. 2012;18: 697–702.

    CAS  PubMed  Google Scholar 

  65. McCarthy HO, Zholobenko AV, Wang Y, Canine B, Robson T, Hirst DG, Hatefi A. Evaluation of a multi-functional nanocarrier for targeted breast cancer iNOS gene therapy. Int J Pharm. 2011;405:196–202.

    Article  CAS  PubMed  Google Scholar 

  66. Ye S, Yang W, Wang Y, Ou W, Ma Q, Yu C, Ren J, Zhong G, Shi H, Yuan Z, Su X, Zhu W. Cationic liposome-mediated nitric oxide synthase gene therapy enhances the antitumor effects of cisplatin in lung cancer. Int J Mol Med. 2013;31:33–42.

    CAS  PubMed  Google Scholar 

  67. Tan J, Zeng Q, Jiang XZ, He LY, Wang JR, Yao K, Wang CH. Apoptosis of bladder transitional cell carcinoma T24 cells induced by adenovirus-mediated inducible nitric oxide synthase gene transfection. Chin J Cancer Res. 2013;25:593–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  68. Coulter JA, Page NL, Worthington J, Robson T, Hirst DG, McCarthy HO. Transcriptional regulation of inducible nitric oxide synthase gene therapy: targeting early stage and advanced prostate cancer. J Gene Med. 2010;12:755–65.

    Article  CAS  PubMed  Google Scholar 

  69. Xiang J, Tang J, Song C, Yang Z, Hirst DG, Zheng QJ, Li G. Mesenchymal stem cells as a gene therapy carrier for treatment of fibrosarcoma. Cytotherapy. 2009;11:516–26.

    Article  CAS  PubMed  Google Scholar 

  70. Adams C, McCarthy HO, Coulter JA, Worthington J, Murphy C, Robson T, Hirst DG. Nitric oxide synthase gene therapy enhances the toxicity of cisplatin in cancer cells. J Gene Med. 2009;11:160–68.

    Article  CAS  PubMed  Google Scholar 

  71. Coulter JA, McCarthy HO, Worthington J, Robson T, Scott S, Hirst DG. The radiation-inducible pE9 promoter driving inducible nitric oxide synthase radiosensitizes hypoxic tumour cells to radiation. Gene Ther. 2008;15:495–503.

    Article  CAS  PubMed  Google Scholar 

  72. Worthington J, Robson T, Scott S, Hirst D. Evaluation of a synthetic CArG promoter for nitric oxide synthase gene therapy of cancer. Gene Ther. 2005;12:1417–23.

    Article  CAS  PubMed  Google Scholar 

  73. Worthington J, McCarthy HO, Barrett E, Adams C, Robson T, Hirst DG. Use of the radiation-inducible WAF1 promoter to drive iNOS gene therapy as a novel anti-cancer treatment. J Gene Med. 2004;6:673–80.

    Article  CAS  PubMed  Google Scholar 

  74. Evig CB, Kelley EE, Weydert CJ, Chu Y, Buettner GR, Burns CP. Endogenous production and exogenous exposure to nitric oxide augment doxorubicin cytotoxicity for breast cancer cells but not cardiac myoblasts. Nitric Oxide. 2004;10:119–29.

    Article  CAS  PubMed  Google Scholar 

  75. Wang Z, Cook T, Alber S, Liu K, Kovesdi I, Watkins SK, Vodovotz Y, Billiar TR, Blumberg D. Adenoviral gene transfer of the human inducible nitric oxide synthase gene enhances the radiation response of human colorectal cancer associated with alterations in tumor vascularity. Cancer Res. 2004;64:1386–95.

    Article  CAS  PubMed  Google Scholar 

  76. Chung P, Cook T, Liu K, Vodovotz Y, Zamora R, Finkelstein S, Billiar T, Blumberg D. Overexpression of the human inducible nitric oxide synthase gene enhances radiation-induced apoptosis in colorectal cancer cells via a caspase-dependent mechanism. Nitric Oxide. 2003;8:119–26.

    Article  CAS  PubMed  Google Scholar 

  77. Khare PD, Liao S, Hirose Y, Kuroki M, Fujimura S, Yamauchi Y, Miyajima-Uchida H, Kuroki M. Tumor growth suppression by a retroviral vector displaying scFv antibody to CEA and carrying the iNOS gene. Anticancer Res. 2002;22:2443–6.

    CAS  PubMed  Google Scholar 

  78. Khare PD, Shao-Xi L, Kuroki M, Hirose Y, Arakawa F, Nakamura K, Tomita Y, Kuroki M. Specifically targeted killing of carcinoembryonic antigen (CEA)-expressing cells by a retroviral vector displaying single-chain variable fragmented antibody to CEA and carrying the gene for inducible nitric oxide synthase. Cancer Res. 2001;61:370–5.

    CAS  PubMed  Google Scholar 

  79. Xu W, Liu L, Charles IG. Microencapsulated iNOS-expressing cells cause tumor suppression in mice. FASEB J. 2002;16:213–5.

    CAS  PubMed  Google Scholar 

  80. Juang SH, Xie K, Xu L, Shi Q, Wang Y, Yoneda J, Fidler IJ. Suppression of tumorigenicity and metastasis of human renal carcinoma cells by infection with retroviral vectors harboring the murine inducible nitric oxide synthase gene. Hum Gene Ther. 1998;9:845–54.

    Article  CAS  PubMed  Google Scholar 

  81. Juang SH, Xie K, Xu L, Wang Y, Yoneda J, Fidler IJ. Use of retroviral vectors encoding murine inducible nitric oxide synthase gene to suppress tumorigenicity and cancer metastasis of murine melanoma. Cancer Biother Radiopharm. 1997;12:167–75.

    Article  CAS  PubMed  Google Scholar 

  82. Barakat A, Al-Majid AM, Al-Najjar HJ, Mabkhot YN, Javaid S, Yousuf S, Choudhary MI. Zwitterionic pyrimidinium adducts as antioxidants with therapeutic potential as nitric oxide scavenger. Eur J Med Chem. 2014;84:146–54.

    Article  CAS  PubMed  Google Scholar 

  83. Ma L, He L, Lei L, Liang X, Lei K, Zhang R, Yang Z, Chen L. Synthesis and biological evaluation of 5-Nitropyrimidine-2,4-dione analogues as inhibitors of nitric oxide and iNOS activity. Chem Biol Drug Des. 2014. doi:10.1111/cbdd.12386. [Epub ahead of print].

    Google Scholar 

  84. Abdelazeem AH, Abdelatef SA, El-Saadi MT, Omar HA, Khan SI, McCurdy CR, El-Moghazy SM. Novel pyrazolopyrimidine derivatives targeting COXs and iNOS enzymes; design, synthesis and biological evaluation as potential anti-inflammatory agents. Eur J Pharm Sci. 2014;62:197–211.

    Article  CAS  PubMed  Google Scholar 

  85. Dave B, Granados-Principal S, Zhu R, Benz S, Rabizadeh S, Soon-Shiong P, Yu KD, Shao Z, Li X, Gilcrease M, Lai Z, Chen Y, Huang TH, Shen H, Liu X, Ferrari M, Zhan M, Wong ST, Kumaraswami M, Mittal V, Chen X, Gross SS, Chang JC. Targeting RPL39 and MLF2 reduces tumor initiation and metastasis in breast cancer by inhibiting nitric oxide synthase signaling. Proc Natl Acad Sci USA. 2014;111:8838–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. El-Aarag BY, Kasai T, Zahran MA, Zakhary NI, Shigehiro T, Sekhar SC, Agwa HS, Mizutani A, Murakami H, Kakuta H, Seno M. In vitro anti-proliferative and anti-angiogenic activities of thalidomide dithiocarbamate analogs. Int Immunopharmacol. 2014;21:283–92.

    Article  CAS  PubMed  Google Scholar 

  87. Chung KW, Jeong HO, Jang EJ, Choi YJ, Kim DH, Kim SR, Lee KJ, Lee HJ, Chun P, Byun Y, Moon HR, Chung HY. Characterization of a small molecule inhibitor of melanogenesis that inhibits tyrosinase activity and scavenges nitric oxide (NO). Biochim Biophys Acta. 2013;1830:4752–61.

    Article  CAS  PubMed  Google Scholar 

  88. Nortcliffe A, Botting NP, O’Hagan D. Novel amino acids: synthesis of furoxan and sydnonimine containing amino acids and peptides as potential nitric oxide releasing motifs. Org Biomol Chem. 2013;11:4657–71.

    Article  CAS  PubMed  Google Scholar 

  89. Miranda E, Nordgren IK, Male AL, Lawrence CE, Hoakwie F, Cuda F, Court W, Fox KR, Townsend PA, Packham GK, Eccles SA, Tavassoli A. A cyclic peptide inhibitor of HIF-1 heterodimerization that inhibits hypoxia signaling in cancer cells. J Am Chem Soc. 2013;135:10418–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Kim SR, Eom TK, Byun HG. Inhibitory effect of the carnosine-gallic acid synthetic peptide on MMP-2 and MMP-9 in human fibrosarcoma HT1080 cells. J Pept Sci. 2014;20:716–24.

    Article  CAS  PubMed  Google Scholar 

  91. Valentine A, O’Rourke M, Yakkundi A, Worthington J, Hookham M, Bicknell R, McCarthy HO, McClelland K, McCallum L, Dyer H, McKeen H, Waugh DJ, Roberts J, McGregor J, Cotton G, James I, Harrison T, Hirst DG, Robson T. FKBPL and peptide derivatives: novel biological agents that inhibit angiogenesis by a CD44-dependent mechanism. Clin Cancer Res. 2011;17:1044–56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. McCarthy HO, Coulter JA, Worthington J, Robson T, Hirst DG. Human osteocalcin: a strong promoter for nitric oxide synthase gene therapy, with specificity for hormone refractory prostate cancer. J Gene Med. 2007;9:511–20.

    Article  CAS  PubMed  Google Scholar 

  93. Coulter JA, Page NL, Worthington J, Robson T, Hirst DG, McCarthy HO. Transcriptional regulation of inducible nitric oxide synthase gene therapy: targeting early stage and advanced prostate cancer. J Gene Med. 2010;12:755–65.

    Article  CAS  PubMed  Google Scholar 

  94. Coulter JA, McCarthy HO, Worthington J, Robson T, Scott S, Hirst DG. The radiation-inducible pE9 promoter driving inducible nitric oxide synthase radiosensitizes hypoxic tumour cells to radiation. Gene Ther. 2008;15:495–503.

    Article  CAS  PubMed  Google Scholar 

  95. Heinecke JL, Ridnour LA, Cheng RY, Switzer CH, Lizardo MM, Khanna C, Glynn SA, Hussain SP, Young HA, Ambs S, Wink DA. Tumor microenvironment-based feed-forward regulation of NOS2 in breast cancer progression. Proc Natl Acad Sci USA. 2014;111:6323–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Li Y, Ma C, Shi X, Wen Z, Li D, Sun M, Ding H. Effect of nitric oxide synthase on multiple drug resistance is related to Wnt signaling in non-small cell lung cancer. Oncol Rep. 2014;32:1703–8.

    CAS  PubMed  Google Scholar 

  97. Kielbik M, Klink M, Brzezinska M, Szulc I, Sulowska Z. Nitric oxide donors: spermine/NO and diethylenetriamine/NO induce ovarian cancer cell death and affect STAT3 and AKT signaling proteins. Nitric Oxide. 2013;35:93–109.

    Article  CAS  PubMed  Google Scholar 

  98. Kielbik M, Szulc I, Brzezinska M, Bednarska K, Przygodzka P, Sulowska Z, Nowak M, Klink M. Nitric oxide donors reduce the invasion ability of ovarian cancer cells in vitro. Anticancer Drugs. 2014;25(10):1141-51.

    Google Scholar 

  99. Duan L, Danzer B, Levenson VV, Maki C. Critical roles for Nitric oxide and ERK in the completion of prosurvival autophagy in 4OHTAM-treated estrogen receptor-positive breast cancer cells. Cancer Lett. 2014;353:290–300.

    Article  CAS  PubMed  Google Scholar 

  100. Wongvaranon P, Pongrakhananon V, Chunhacha P, Chanvorachote P. Acquired resistance to chemotherapy in lung cancer cells mediated by prolonged nitric oxide exposure. Anticancer Res. 2013;33:5433–44.

    CAS  PubMed  Google Scholar 

  101. Sanuphan A, Chunhacha P, Pongrakhananon V, Chanvorachote P. Long-term nitric oxide exposure enhances lung cancer cell migration. Biomed Res Int. 2013;2013:186972.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  102. Sinha BK, Bhattacharjee S, Chatterjee S, Jiang J, Motten AG, Kumar A, Espey MG, Mason RP. Role of nitric oxide in the chemistry and anticancer activity of etoposide (VP-16,213). Chem Res Toxicol. 2013;26:379–87.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. Kim RK, Suh Y, Cui YH, Hwang E, Lim EJ, Yoo KC, Lee GH, Yi JM, Kang SG, Lee SJ. Fractionated radiation-induced nitric oxide promotes expansion of glioma stem-like cells. Cancer Sci. 2013;104:1172–7.

    Article  CAS  PubMed  Google Scholar 

  104. Bhowmick R, Girotti AW. Cytoprotective signaling associated with nitric oxide upregulation in tumor cells subjected to photodynamic therapy-like oxidative stress. Free Radic Biol Med. 2013;57:39–48.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. Bhowmick R, Girotti AW. Cytoprotective induction of nitric oxide synthase in a cellular model of 5-aminolevulinic acid-based photodynamic therapy. Free Radic Biol Med. 2010;48:1296–301.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  106. Bhowmick R, Girotti AW. Pro-survival and pro-growth effects of stress-induced nitric oxide in a prostate cancer photodynamic therapy model. Cancer Lett. 2014;343:115–22.

    Article  CAS  PubMed  Google Scholar 

Download references

No Conflict Statement

No potential conflicts of interest were disclosed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen O. McCarthy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

McCrudden, C., McCarthy, H. (2015). Emerging Role of NO-Mediated Therapeutics. In: Bonavida, B. (eds) Nitric Oxide and Cancer: Pathogenesis and Therapy. Springer, Cham. https://doi.org/10.1007/978-3-319-13611-0_13

Download citation

Publish with us

Policies and ethics