Skip to main content

Pivotal Role of Nitric Oxide in Chemo and Immuno Sensitization of Resistant Tumor Cells to Apoptosis

  • Chapter
  • First Online:
Nitric Oxide and Cancer: Pathogenesis and Therapy
  • 716 Accesses

Abstract

Nitric oxide (NO) has been the subject of many reports with respect to its role in cancer. These various reports were not consistent and often contradictory. On one hand, the levels of iNOS correlated with both the progression and carcinogenesis of certain tumors, whereas, on the other hand, the levels of iNOS or treatment with NO donors correlated with tumor regression. These contradictory findings were interpreted as due to the relative levels of generated NO, such as lower levels were pro-tumorigenic whereas high levels were anti-tumorigenic. Initial findings by us and others demonstrated that the induction of iNOS in resistant tumors or the treatment with NO donors resulted in the reversal of resistance and the tumor cells were chemo and immuno sensitized to cytotoxic stimuli. Consequently, we have extended our investigations to examine the biochemical and molecular underlying mechanisms responsible for NO-mediated chemo-immunosensitizing activities to apoptosis by cytotoxic agents. In our investigations, we have established, in several tumor cell lines, the highly dysregulated NF-κB/Snail/YY1/RKIP/PTEN/PI3K-AKT loop that regulates both drug/immune resistance and EMT/metastasis. This dysregulated loop was established by the demonstration that most tumor cells exhibit constitutively hyper-activated NF-κB and PI3K-AKT pathways that regulate cell viability, proliferation and anti-apoptotic pathways through a large number of downstream target gene products. Independent analyses revealed that the transcription factor Yin Yang 1 (YY1), downstream of NF-κB, was a repressor of the Fas and DR5 death receptors expression on many tumor cells and correlated with the tumor cells’ resistance to corresponding FasL and TRAIL death ligands, respectively, on the surface of cytotoxic lymphocytes. In addition, the overexpression of YY1 in tumor cells regulates positively the transcription repressor factor Snail that regulates both EMT and resistance. The recent findings demonstrated that the metastasis-suppressor gene product, Raf kinase inhibitor protein, RKIP, which is minimally expressed in many cancers, was involved in the reversal of drug/immune resistance when it is overexpressed. Overexpression of RKIP was also reported to inhibit both the Raf/MEK/ERK and NF-κB pathways and, thus, also inhibited YY1 and Snail downstream of NF-κB. Snail-mediated inhibition of RKIP and PTEN expressions resulted in maintaining the activation of the PI3K-AKT survival pathway and its crosstalk with the NF-κB pathway. Overexpression of RKIP resulted in the upregulation of PTEN and inhibition of PI3K-AKT and NF-κB and resulting in the downregulation of YY1 and Snail and sensitization to chemo-immune-mediated apoptosis.

Altogether, the above findings established the tightly dysregulated NF-κB/Snail/YY1/RKIP/PTEN/PI3K-AKT loop that regulates cell survival, cell proliferation, EMT/metastasis, and resistance to apoptotic stimuli by cytotoxic agents. This dysregulated loop was shown to be significantly altered by NO due to the findings that treatment with NO donors resulted in the S-nitrosylation of p50/p65 chains of NF-κB and S-nitrosylation of both YY1 and Snail and, thus, inhibiting their activities and resulting in the upregulation of RKIP and PTEN. These gene products, in turn, also inhibit NF-κB and PI3K, respectively, and potentiate the NO-mediated inhibitory activity. These effects result in the inhibition of cell viability, proliferation, EMT/metastasis, and sensitization to apoptosis by cytotoxic immune-chemo drugs. The findings in vitro of the sensitizing activities of NO donors were corroborated in part in vivo in mice bearing tumor xenografts.

In this chapter, we briefly review our findings and those of others of the anti-tumor chemo and immune sensitizing activities of NO donors through their interference, in part, of the highly dysregulated NF-κB/Snail/YY1/RKIP/PTEN/PI3K-AKT resistance and metastatic loop. We suggest that NO donors are a new class of therapeutic agents that can exert simultaneously multiple anti-tumor effects at the level of cell viability, cell proliferation, induction of EMT, and chemosensitizing activities. The development and clinical application of various NO donors in combination with various therapeutics in the treatment of resistant and metastatic tumors are highly warranted, provided they are subtoxic to normal tissues.

This paper has not been published nor is it under consideration to be published by any other journal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CRC:

Colorectal cancer

CTL:

Cytotoxic T lymphocyte

DETANONOate:

Diethylenetriamine NONOate

DR4:

Death receptor 4

DR5:

Death receptor 5

EMT:

epithelial mesenchymal transition

FasL:

Fas ligand

iNOS:

Inducible nitric oxide synthase

NK:

Natural killer

NPI-0052:

Proteasome inhibitor

PDT:

Photodynamic therapy

Rituximab:

Chimeric anti-CD20 mAb

RKIP:

Raf kinase inhibitor protein

TRAIL:

TNF-related apoptosis-inducing ligand

YY1:

Yin-Yang 1

References

  1. Hughes MN. Chemistry of nitric oxide and related species. In: Robert KP, editor. Methods in enzymology. Waltham: Academic. 2008. pp. 3–19.

    Google Scholar 

  2. Kroncke KD, Fehsel K, Kolb-Bachofen V. Nitric oxide: cytotoxicity versus cytoprotection—how, why, when and where? Nitric Oxide. 1997;1:107–20.

    CAS  PubMed  Google Scholar 

  3. Osorio J, Recchia F. The role of nitric oxide in metabolism regulation: from basic sciences to the clinical setting. Intensive Care Med. 2000;26:1395–8.

    CAS  PubMed  Google Scholar 

  4. Albina J, Reichner J. Role of nitric oxide in mediation of macrophage cytotoxicity and apoptosis. Cancer Metastasis Rev. 1998;17:39–53.

    CAS  PubMed  Google Scholar 

  5. Umansky V, Shirrmacher V. Nitric oxide-induced apoptosis in tumor cells. Adv Cancer Res. 2001;82:107–131.

    CAS  PubMed  Google Scholar 

  6. Leiro J, Iglesias R, Paramá A, Sanmartin ML, Ubeira FM. Respiratory burst responses of rat macrophages to microsporidian spores. Exp Parasitol. 2001;98:1–9.

    CAS  PubMed  Google Scholar 

  7. Gkaliagkousi E, Ferro A. Nitric oxide signalling in the regulation of cardiovascular and platelet function. Front Biosci. 2011;16:1873–97.

    CAS  Google Scholar 

  8. Andrew PJ, Mayer B. Enzymatic function of nitric oxide synthases. Cardiovasc Res. 1999;43:521–31

    CAS  PubMed  Google Scholar 

  9. Huerta S1, Chilka S, Bonavida B. Nitric oxide donors: novel cancer therapeutics (review). Int J Oncol. 2008;33:909–27.

    CAS  PubMed  Google Scholar 

  10. Derbyshire ER, Marletta MA. Structure and regulation of soluble guanylate cyclase. Ann Rev Biochem. 2012;81:533–59.

    CAS  PubMed  Google Scholar 

  11. MacMicking J, Xie QW, Nathan C. Nitric oxide and macrophage function. Ann Rev Immunol. 1997;15:323–50.

    CAS  Google Scholar 

  12. Farias-Eisner R, Sherman MP, Aeberhard E, Chaudhuri G. Nitric oxide is an important mediator for tumoricidal activity in vivo. Proc Natl Acad Sci USA. 1994;91:9407–11.

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Binder C, Schulz M, Hiddemann W, Oellerich M. Induction of inducible nitric oxide synthase is an essential part of tumor necrosis factor-alpha-induced apoptosis. Lab Invest. 1999;79:1703–12.

    CAS  PubMed  Google Scholar 

  14. Wink D, Hines H, Cheng R, Switzer C, Flores-Santana W, Vitek M, Ridnour L, Colton C. Nitric oxide and the redox mechanisms in the immune response. J Leukocyte Biol. 2011;89:873–91.

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Brennan PA, Downie IP, Langdon JD, Zaki GA. Emerging role of nitric oxide in cancer. Br J Oral Maxillofac Surg. 1999;37:370–3.

    CAS  PubMed  Google Scholar 

  16. Chang K, Lee SJ, Cheong I, et al. Nitric oxide suppresses inducible nitric oxide synthase expression by inhibiting posttranslational modification of IkappaB. Exp Mol Med. 2004;36:311–24.

    CAS  PubMed  Google Scholar 

  17. Lechner M, Lirk P, Rieder J. Inducible nitric oxide synthase (iNOS) in tumor biology: the two sides of the same coin. Semin Cancer Biol. 2005;15:277–289.

    CAS  PubMed  Google Scholar 

  18. Magee PN, Barnes JM. The production of malignant primary hepatic tumors in the rat by feeding dimethyl-nitrosamine. Br J Cancer. 1956;10:114–22.

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Hibbs JB Jr, Taintor RR, Vavrin Z. Macrophage cytotoxicity: role for L-arginine deiminase and imino nitrogen oxidation to nitrite. Science. 1987;235:473–6.

    CAS  PubMed  Google Scholar 

  20. Hibbs JB Jr, Taintor RR, Vavrin Z, Rachlin EM. Nitric oxide: a cytotoxic activated macrophage effector molecule. Biochem Biophys Res Commun. 1988;157:87–94.

    CAS  PubMed  Google Scholar 

  21. Bonavida B, Khineche S, Huerta-Yepez S, Garban H. Therapeutic potential of nitric oxide in cancer. Drug Resist Updat. 2006;9:157–73.

    CAS  PubMed  Google Scholar 

  22. Bonavida B, Baritaki S, Huerta-Yepez S, Vega MI, Jazirehi AR, Berenson J. Nitric oxide donors are a new class of anti-cancer therapeutics for the reversal of resistance and inhibition of metastasis. In: Bonavida, B, editor. Nitric Oxide Cancer Cancer Drug Discov Dev. Springer. 2010; PP. 459–78.

    Google Scholar 

  23. Alexandrova R, Mileva M, Zvetkova E. Nitric oxide and cancer (minireview). Exp Pathol Parasitol. 2001;4:13–8.

    CAS  Google Scholar 

  24. Brune H. Surface diffusion: shifting strings. Nat Mater. 2003;2:778–9.

    CAS  PubMed  Google Scholar 

  25. Fukumura D, Kashiwagi S, Jain RK. The role of nitric oxide in tumor progression. Nat Rev Cancer. 2006;6:521–34.

    CAS  PubMed  Google Scholar 

  26. Wink DA, Vodovotz Y, Cook JA, Krishna MC, Kim S, Coffin D, et al. The role of nitric oxide chemistry in cancer treatment. Biochemistry (Mosc). 1998;63:802–9.

    CAS  Google Scholar 

  27. Forrester K, Ambs S, Lupold SE, et al. Nitric oxide-induced p53 accumulation and regulation of inducible nitric oxide synthase expression by wild-type p53. Proc Natl Acad Sci USA. 1996;93:2442–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Glockzin S, von KA, Scheffner M, Brune B. Activation of the cell death program by nitric oxide involves inhibition of the proteasome. J Biol Chem. 1999;274:19581–6.

    Google Scholar 

  29. Li CQ, Robles AI, Hanigan CL, Hofseth LJ, Trudel LJ, Harris CC, Wogan GN. Apoptotic signaling pathways induced by nitric oxide in human lymphoblastoid cells expressing wild-type or mutant p53. Cancer Res. 2004;64:3022–9.

    CAS  PubMed  Google Scholar 

  30. Boyd CS, Cadenas E. Nitric oxide and cell signaling pathways in mitochondrial-dependent apoptosis. Biol Chem. 2002;383:411–23.

    CAS  PubMed  Google Scholar 

  31. Lala PK, Chakraborty C. Role of nitric oxide in carcinogenesis and tumour progression. Lancet Oncol. 2001;2:149–156.

    CAS  PubMed  Google Scholar 

  32. Schaer DA, Hirschhorn-Cymerman D, Wolchok JD. Targeting tumor-necrosis factor receptor pathways for tumor immunotherapy. J Immunother Cancer. 2014;2:7.

    PubMed Central  PubMed  Google Scholar 

  33. Pipili-Synetos E, Papageorgiou A, Sakkoula E, Sotiropoulou G, Fotsis T, Karakiulakis G, Maragoudakis ME. Inhibition of angiogenesis, tumour growth and metastasis by the NO-releasing vasodilators, isosorbide mononitrate and dinitrate. Br J Pharmacol. 1995;116:1829–34.

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Kumar A, Takada Y, Boriek AM, Aggarwal BB. Nuclear factor-kappaB: its role in health and disease. J Mol Med (Berl). 2004;82:434–48.

    CAS  Google Scholar 

  35. Aggarwal BB. Nuclear factor-kappaB: the enemy within. Cancer Cell. 2004;6:203–8.

    CAS  PubMed  Google Scholar 

  36. Adams J. Preclinical and clinical evaluation of proteasome inhibitor PS-341 for the treatment of cancer. Curr Opin Chem Biol. 2002;6:493–500.

    CAS  PubMed  Google Scholar 

  37. Adams J. The proteasome a suitable antineoplastic target. Nat Rev Cancer. 2004;4:349–60.

    CAS  PubMed  Google Scholar 

  38. Marshall HE, Stamler JS. Inhibition of NF-kappa B by S-nitrosylation. Biochemistry. 2001;40:1688–93.

    CAS  PubMed  Google Scholar 

  39. Huerta S, Chilka S, Bonavida B. Nitric oxide donors: novel cancer therapeutics. Int J Oncol. 2008;33:909–27.

    CAS  PubMed  Google Scholar 

  40. Nagai H, Yasuda H, Hatachi Y, Xue D, Sasaki T, Yamaya M, Sakamori Y, Togashi Y, Masago K, Ito I, Kim YH, Mio T, Mishima M. Nitric oxide (NO) enhances pemetrexed cytotoxicity via NO-cGMP signaling in lung adenocarcinoma cells in vitro and in vivo. Int J Oncol. 2012;41:24–30.

    CAS  PubMed  Google Scholar 

  41. Ye S, Yang W, Wang Y, Ou W, Ma Q, Yu C, Ren J, Zhong G, Shi H, Yuan Z, Zhu W. Cationic liposome-mediated nitric oxide synthase gene therapy enhances the antitumor effects of cisplatin in lung cancer. Int J Mol Med. 2013;31:33–42.

    CAS  PubMed  Google Scholar 

  42. Jamieson ER, Lippard SJ. Structure, recognition, and processing of cisplatin-DNA adducts Chem Rev. 1999;99:2467–2498.

    CAS  PubMed  Google Scholar 

  43. Hewitt RE, McMarlin A, Kleiner D, Wersto R, Martin P, Tsokos M, Stamp GW, Stetler-Stevenson WG. Validation of a model of colon cancer progression. J Pathol. 2000;192:446–454.

    CAS  PubMed  Google Scholar 

  44. Huerta S, Harris DM, Jazirehi A, Bonavida B, Elashoff D, Livingston EH, Heber D. Gene expression profile of metastatic colon cancer cells resistant to cisplatin-induced apoptosis Int J Oncol. 2003;22:663–670.

    CAS  PubMed  Google Scholar 

  45. Huerta S, Goulet EJ, Huerta-Yepez S, Livingston EH. Screening and detection of apoptosis. J Surg Res. 2007;139:143–156.

    CAS  PubMed  Google Scholar 

  46. Huerta S, Baay-Guzman G, Gonzalez-Bonilla CR, Livingston EH, Huerta-Yepez S, Bonavida B. In vitro and in vivo sensitization of SW620 metastatic colon cancer cells to CDDP-induced apoptosis by the nitric oxide donor DETANONOate: involvement of AIF. Nitric Oxide. 2009;20:182–94.

    CAS  PubMed  Google Scholar 

  47. Garbán HJ, Bonavida B. Nitric oxide sensitizes ovarian tumor cells to Fas-induced apoptosis. Gynecol Oncol. 1999;73:257–64.

    PubMed  Google Scholar 

  48. Huerta-Yepez S, Vega M, Jazirehi A, Garban H, Hongo F, Cheng G, Bonavida B. Nitric oxide sensitizes prostate carcinoma cell lines to TRAIL-mediated apoptosis via inactivation of NF-kappa B and inhibition of Bcl-xl expression. Oncogene. 2004;23:4993–5003.

    CAS  PubMed  Google Scholar 

  49. Huerta S, Heinzerling JH, Nguiano-Hernandez YM, Huerta-Yepez S, Lin J, Chen D, Bonavida B, Livingston EH. Modification of gene products involved in resistance to apoptosis in metastatic colon cancer cells: roles of Fas, Apaf-1, NFkappaB, IAPs, Smac/DIABLO, and AIF. J Surg Res. 2007;142:184–94.

    CAS  PubMed  Google Scholar 

  50. Modjtahedi N, Giordanetto F, Madeo F, Madeo F, Kroemer G. Apoptosis-inducing factor: vital and lethal. Trends Cell Biol. 2006;16:264–72.

    CAS  PubMed  Google Scholar 

  51. Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM, Kroemer G. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature. 1999;397:441–6.

    CAS  PubMed  Google Scholar 

  52. Shresta S, Pham CT, Thomas DA, Graubert TA, Ley TJ. How do cytotoxic lymphocytes kill their targets?. Curr Opin. Immunol. 1998;10:581–7.

    CAS  Google Scholar 

  53. Walczak H, Miller RE, Ariail K, Gliniak B, Griffith TS, Kubin M, Chin W, Jones J, Woodward A, Le T, Smith C, Smolak P, Goodwin RG, Rauch CT, Schuh JC, Lynch DH. Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med. 1999;5:157–63.

    CAS  PubMed  Google Scholar 

  54. Buchsbaum DJ, Forero-Torres A, LoBuglion AF. TRAIL-receptor antibodies as a potential cancer treatment. Future Oncol. 2007;3:405–9.

    CAS  PubMed  Google Scholar 

  55. Hymowitz SG, Christinger HW, Fuh G, Ultsch M, O’Connell M, Kelley RF, Ashkenazi A, de Vos AM. Triggering cell death: the crystal structure of Apo2L/TRAIL in a complex with death receptor 5. Mol Cell. 1999;4:563–71.

    CAS  PubMed  Google Scholar 

  56. Sheridan JP, Marsters SA, Pitti RM, Gurney A, Skubatch M, Baldwin D, Ramakrishnan L, Gray CL, Baker K, Wood WI, Goddard AD, Godowski P, Ashkenazi A. Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science. 1997;277:818–21.

    CAS  PubMed  Google Scholar 

  57. MacFarlane M, Ahmad M, Srinivasula SM, Fernandes-Alnemri T, Cohen GM, Alnemri ES. Identification and molecular cloning of two novel receptors for the cytotoxic ligand TRAIL. J Biol Chem. 1997;272:25417–20.

    CAS  PubMed  Google Scholar 

  58. Pan G, Ni J, Wei YF, Yu GL, Gentz R, Dixit VM. An antagonist decoy receptor and a death domain-containing receptor for TRAIL. Science. 1997;277:815–818.

    CAS  PubMed  Google Scholar 

  59. Chao DT, Korsmeyer SJ. BCL-2 family: regulators of cell death. Annu Rev Immunol. 1998;16:395–419.

    CAS  PubMed  Google Scholar 

  60. Tschopp J, Irmler M, Thome M. Inhibition of fas death signals by FLIPS. Curr Opin Immunol. 1998;10:552–8.

    CAS  PubMed  Google Scholar 

  61. Deveraux QL, Reed JC. IAP family proteins: suppressors of apoptosis. Genes Dev. 1999;13:239–252.

    CAS  PubMed  Google Scholar 

  62. Lee H, Dadgostar H, Cheng Q, Shu J, Cheng G. NF-kB-mediated up-regulation of Bcl-x and Bfl-1/A1 is required for CD40 survival signaling in B lymphocytes. Proc Natl Acad Sci USA. 1999;96:9136–9141.

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Jazirehi AR, Ng CP, Gan XH, Schiller G, Bonavida B. Adriamycin sensitizes the adriamycin-resistant 8226/Dox40 human multiple myeloma cells to Apo2L/tumor necrosis factor-related apoptosis-inducing ligand-mediated (TRAIL) apoptosis. Clin Cancer Res. 2001;7:3874–83.

    CAS  PubMed  Google Scholar 

  64. Tillman DM, Izeradjene K, Szucs KS, Douglas L, Houghton JA. Rottlerin sensitizes colon carcinoma cells to tumor necrosis factor-relat apoptosis-inducing ligand-induced apoptosis via uncoupling of the mitochondria independent of protein kinase C. Cancer Res. 2003;63:5118–25.

    CAS  PubMed  Google Scholar 

  65. Yang L, Lan C, Fang Y, Zhang Y, Wang J, Guo J, Wan S, Yang S, Wang R, Fang D. Sodium nitroprusside (SNP) sensitizes human gastric cancer cells to TRAIL-induced apoptosis. Int Immunopharmacol. 2013;17:383–9.

    CAS  PubMed  Google Scholar 

  66. Wang CY, Mayo MW, Baldwin AS Jr. TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kappaB. Science. 1996;274:784–7.

    Google Scholar 

  67. Wang CY, Cusack JC Jr, Liu R, Baldwin AS Jr. Control of inducible chemoresistance: enhanced anti-tumor therapy through increased apoptosis by inhibition of NF-kappaB. Nat Med. 1999;5:412–7.

    Google Scholar 

  68. Garcia-Ruiz C, Colell A, Mari M, Morales A, Fernandez-Checa JC. Direct effect of ceramide on the mitochondrial electron transport chain leads to generation of reactive oxygen species. Role of mitochondrial glutathione. J Biol Chem. 1997;272:11369–77.

    Google Scholar 

  69. Hong YH, Peng HB, La Fata V, Liao JK. Hydrogen peroxide-mediated transcriptional induction of macrophage colony-stimulating factor by TGF-beta1. J Immunol. 1997;159:2418–23.

    Google Scholar 

  70. Garbán HJ, Bonavida B. Nitric oxide disrupts H2O2-dependent activation of nuclear factor kappa B. Role in sensitization of human tumor cells to tumor necrosis factor-alpha-induced cytotoxicity. J Biol Chem. 2001;276:8918–23.

    PubMed  Google Scholar 

  71. Ye J, Ghosh P, Cippitelli M, Subleski J, Hardy KJ, Ortaldo JR, Young HA. Characterization of a silencer regulatory element in the human interferon-g promoter. J Biol Chem. 1994;269:25728.

    CAS  PubMed  Google Scholar 

  72. Garbán HJ, Bonavida B. Nitric oxide inhibits the transcription repressor Yin-Yang 1 binding activity at the silencer region of the Fas promoter: a pivotal role for nitric oxide in the up-regulation of Fas gene expression in human tumor cells. J Immunol. 2001;167:75–81.

    PubMed  Google Scholar 

  73. Leon-Bollotte L, Subramaniam S, Cauvard O, Plenchette-Colas, S, Paul C, Godard C, Martinez-Ruiz A, Legembre P, Jeannin JF, Bettaieb A. S-nitrosylation of the death receptor fas promotes fas ligand-mediated apoptosis in cancer cells. Gastroenterology. 2011;140:2009–18.

    Google Scholar 

  74. Shibata D, Peinado MA, Ionov Y, Malkhosyan S, Perucho M. Genomic instability in repeated sequences is an early somatic event in colorectal tumorigenesis that persists after transformation. Nat Genet. 1994;6:273–81.

    CAS  PubMed  Google Scholar 

  75. Siegert A, Rosenberg C, Schmitt WD, Denkert C, Hauptmann S. Nitric oxide of human colorectal adenocarcinoma cell lines promotes tumour cell invasion. Br J Cancer. 2002;86:1310–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  76. Huerta S, Gao X, Bonavida B. DETANONO is a potent chemo/radio-sensitizing agen in colon and colorectal cancers as assessed in in vitro and in vivo established tumor xenografts. Forum Immunopathol Dis Ther. 2010;1:281–95.

    Google Scholar 

  77. Godoy LC, Anderson CT, Chowdhury R, Trudel LJ, Wogan GN. Endogeneously produced nitric oxide mitigates sensitivity of melanoma cells to cisplatin. Proc Natl Acad Sci USA. 2012;109:20373–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  78. Sinha BK, Bhattacharjee S, Chatterjee S, Jiang J, Motten AG, Kumar A, Espey MG, Mason RP. Role of nitric oxide in the chemistry and anticancer activity of etoposide (VP-16,213). Chem Res Toxicol. 2013;18:379–87.

    Google Scholar 

  79. Wongvaranon P, Pongrakhananon V, Chunhacha P, Chanvorachote P. Acquired resistance to chemotherapy in lung cancer cells mediated by prolonged nitric oxide exposure. Anticancer Res. 2013;33:5433–44.

    CAS  PubMed  Google Scholar 

  80. Brune B, von Knethen A, Sandau KB. Nitric oxide and its role in apoptosis. Eur J Pharmacol. 1998;351:261–72.

    CAS  PubMed  Google Scholar 

  81. Brune B, von Knethen A, Sandau KB. Nitric oxide (NO): an effector of apoptosis. Cell Death Differ. 1999;6:969–75.

    CAS  PubMed  Google Scholar 

  82. Brune B, Cantoni O. Nitric oxide-mediated redox reactions in pathology, biochemistry and medicine. Cell Death Differ. 2000;7:1018–20.

    CAS  PubMed  Google Scholar 

  83. Liu L, Stamler JS. NO: an inhibitor of cell death. Cell Death Differ. 1999;6:937–42.

    CAS  PubMed  Google Scholar 

  84. Moncada S, Erusalimsky JD. Does nitric oxide modulate mitochondrial energy generation and apoptosis?. Nat Rev Mol Cell Biol. 2002;3:214–20.

    CAS  PubMed  Google Scholar 

  85. Brune B. Nitric oxide: NO apoptosis or turning it ON? Cell Death Differ. 2003;10:864–9.

    PubMed  Google Scholar 

  86. Raguz S, Yague E. Resistance to chemotherapy: new treatments and novel insights into an old problem. Br J Cancer. 2008;99:387–91.

    PubMed Central  CAS  PubMed  Google Scholar 

  87. Reed JC. Dysregulation of apoptosis in cancer. J Clin Oncol. 1999;17:2941–53.

    CAS  PubMed  Google Scholar 

  88. Tan DS, Gerlinger M, Teh BT, Swanton C. Anti-cancer drug resistance. Understanding the mechanisms through the use of integrative genomics and functional RNA interference. Eur J Cancer. 2010;46:2143–4.

    Google Scholar 

  89. DeClerck K, Elble RC. The role of hypoxia and acidosis in promoting metastasis and resistance to chemotherapy. Front Biosci. 2010;15:213–25.

    CAS  Google Scholar 

  90. Bonavida B, Baritaki S. Dual role of NO donors in the reversal of tumor cell resistance and EMT: downregulation of the NF-kB/Snail/YY1/RKIP circuitry. Nitric Oxide. 2011;24:1–7.

    CAS  PubMed  Google Scholar 

  91. Yang MH, Chang SY, Chiou SH, Liu CJ, Chi CW, Chen PM, et al. Overexpression of NBS1 induces epithelial-mesenchymal transition and co-expression of NBS1 and Snail predicts metastasis of head and neck cancer. Oncogene. 2007;26:1459–67.

    CAS  PubMed  Google Scholar 

  92. Olmeda D, Jorda M, Peinado H, Fabra A, Cano A. Snail silencing effectively suppresses tumor growth and invasiveness. Oncogene. 2007; 26:1862–74.

    CAS  PubMed  Google Scholar 

  93. Bonavida B, Baritaki S. Inhibition of epithelial-to-mesenchymal transition (EMT) in cancer by nitric oxide: pivotal roles of nitrosylation of NF-kB, YY1 and Snail. Forum Immunopathol Dis Ther. 2012;3:125–33.

    Google Scholar 

  94. Tsao DA, Yu HS, Chang HR. Nitric oxide enhances expression of raf kinase inhibitor protein in keratinocytes. Exp Dermatol. 2009;18:571–3.

    CAS  PubMed  Google Scholar 

  95. Lin Y, Bai L, Chen W, Xu S. The NF-kappaB activation pathways, emerging molecular targets for cancer prevention and therapy. Expert Opin Ther Targets. 2010;14:45–55.

    PubMed Central  CAS  PubMed  Google Scholar 

  96. Wang H, Hertlein E, Bakkar N, Sun H, Acharyya S, Wang J, Carathers M, Davuluri R, Guttridge DC. NF-kappaB regulation of YY1 inhibits skeletal myogenesis through transcriptional silencing of myofibrillar genes. Mol Cell Biol. 2007;27:4374–87.

    PubMed Central  CAS  PubMed  Google Scholar 

  97. Kleinberg L, Davidson B. Cell survival and apoptosis-related molecules in cancer cells in effusions: a comprehensive review. Diagn Cytopathol. 2009;37:613–24.

    PubMed  Google Scholar 

  98.  Julien S, Puig I, Caretti E, Bonaventure J, Nelles L, van Roy F, Dargemont C, de Herreros AG, Bellacosa A, Larue L. Activation of NF-kappaB by Akt upregulates Snail expression and induces epithelium mesenchyme transition. Oncogene. 2007;26:7445–56.

    CAS  PubMed  Google Scholar 

  99. Yeung K, Seitz T, Li S, Janosch P, McFerran B, Kaiser C, Fee F, Katsanakis KD, Rose DW, Mischak H, Sedivy JM, Kolch W. Suppression of Raf-1 kinase activity and MAP kinase signalling by RKIP. Nature. 1999;401:173–7.

    CAS  PubMed  Google Scholar 

  100. Yeung KC, Rose DW, Dhillon AS, Yaros D, Gustafsson M, Chatterjee D, McFerran B, Wyche J, Kolch W, Sedivy JM. Raf kinase inhibitor protein interacts with NF-kappaB-inducing kinase and TAK1 and inhibits NF-kappaB activation. Mol Cell Biol. 2001;21:7207–17.

    PubMed Central  CAS  PubMed  Google Scholar 

  101. Kumar A, Takada Y, Boriek AM, Aggarwal BB. Nuclear factor-kappaB its role in health and disease. J Mol Med. 2004;82:434–48.

    CAS  PubMed  Google Scholar 

  102. Vega MI, Jazirehi AR, Huerta-Yepez S, Bonavida B. Rituximab-induced inhibition of YY1 and Bcl-xL expression in Ramos non-Hodgkin’s lymphoma cell line via inhibition of NF-kappa B activity: role of YY1 and Bcl-xL in Fas resistance and chemoresistance, respectively. J Immunol. 2005;175:2174–83.

    CAS  PubMed  Google Scholar 

  103. Santos-Silva MC, Sampaio de Freitas M, Assreuy J. Killing of lymphoblastic leukemia cells by nitric oxide and taxol: involvement of NF-kappaB activity. Cancer Lett. 2001;173:53–61.

    CAS  PubMed  Google Scholar 

  104. Santos-Silva MC, Freitas MS, Assreuy J. Involvement of NF-kappaB and glutathione in cytotoxic effects of nitric oxide and taxol on human leukemia cells. Leuk Res. 2006;30:145–152.

    CAS  PubMed  Google Scholar 

  105. Sun Y, Rigas B. The thioredoxin system mediates redox-induced cell death in human colon cancer cells: implications for the mechanism of action of anticancer agents. Cancer Res. 2008;68:8269–7.

    PubMed Central  CAS  PubMed  Google Scholar 

  106. Park SW, Wei LN. Regulation of c-myc gene by nitric oxide via inactivating NF-kappa B complex in P19 mouse embryonal carcinoma cells. J Biol Chem. 2003;278:29776–82.

    CAS  PubMed  Google Scholar 

  107. Huerta-Yepez S, Vega M, Escoto-Chavez SE, Murdock B, Sakai T, Baritaki S, Bonavida B. Nitric oxide sensitizes tumor cells to TRAIL-induced apoptosis via inhibition of the DR5 transcription repressor Yin Yang 1. Nitric Oxide. 2009;20:39–52.

    CAS  PubMed  Google Scholar 

  108. Huerta-Yepez S, Baritaki S, Baay-Guzman G, Hernandez-Luna MA, Hernandez-Cueto A, Vega MI, Bonavida B. Contribution of either YY1 or BclXL-induced inhibition by the NO-donor DETANONOate in the reversal of drug resistance, both in vitro and in vivo. YY1 and BclXL are overexpressed in prostate cancer. Nitric Oxide. 2013;29:17–24.

    CAS  PubMed  Google Scholar 

  109. Seligson D, Horvath S, Huerta-Yepez S, Hanna S, Garban H, Roberts A, et al. Expression of transcription factor Yin Yang 1 in prostate cancer. Int J Oncol. 2005;27:131–41.

    CAS  PubMed  Google Scholar 

  110. Sun A, Tang J, Hong Y, Song J, Terranova PF, Thrasher JB, et al. Androgen receptor-dependent regulation of Bcl-xL expression: implication in prostate cancer progression. Prostate. 2008;68:453–61.

    CAS  PubMed  Google Scholar 

  111. Marshall HE, Hess DT, Stamler JS. S -nitrosylation: physiological regulation of NF-kappaB. Proc Natl Acad Sci USA. 2004;101:8841–2.

    PubMed Central  CAS  PubMed  Google Scholar 

  112. Lebedeva I, Raffo A, Rando R, Ojwang J, Cossum P, Stein CA. Chemosensitization of bladder carcinoma cells by bcl-xL antisense oligonucleotides. J Urol. 2001;166:461–9.

    CAS  PubMed  Google Scholar 

  113. Shigeno M, Nakao K, Ichikawa T, Suzuki K, Kawakami A, Abiru S, Miyazoe S, Nakagawa Y, Ishikawa H, Hamasaki K, Nakata K, Ishii N, Eguchi K. Interferon-alpha sensitizes human hepatoma cells to TRAIL-induced apoptosis through DR5 upregulation and NF-kappa B inactivation. Oncogene. 2003;22:1653–62.

    CAS  PubMed  Google Scholar 

  114. LaVallee TM, Zhan XH, Johnson MS, Herbstritt CJ, Swartz G, Williams MS, Hembrough WA, Green SJ, Pribluda VS. 2-methoxyestradiol up-regulate death receptor 5 and induces apoptosis through activation of the extrinsic pathway. Cancer Res. 2003;63:468–75.

    CAS  PubMed  Google Scholar 

  115. Johnston JB, Kabore AF, Strutinsky J, Hu X, Paul JT, Kropp DM, Kuschak B, Begleiter A, Gibson SB. Role of the TRAIL/APO2-L death receptors in chlorambucil- and fludarabine-induced apoptosis in chronic lymphocytic leukemia. Oncogene. 2003;22:8356–69.

    CAS  PubMed  Google Scholar 

  116. Fulda S, Wick W, Weller M, Debatin KM. Smac agonists sensitize for Apo2L/TRAIL- or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo. Nat Med. 2002;8:808–15.

    CAS  PubMed  Google Scholar 

  117. Chawla-Sarkar M, Bauer JA, Lupica JA, Morrison BH, Tang Z, Oates RK, Almasan A, DiDonato JA, Borden EC, Lindner DJ. Suppression of NF-kappa B survival signaling by nitrosylcobalamin sensitizes neoplasms to the anti-tumor effects of Apo2L/TRAIL. J Biol Chem. 2003;278:39461–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  118. Hongo F, Garban H, Huerta-Yepez S, Vega M, Jazirehi AR, Mizutani Y, Miki T, Bonavida B. Inhibition of the transcription factor Yin Yang 1 activity by S-nitrosation. Biochem Biophys Res Commun. 2005;336:692–701.

    CAS  PubMed  Google Scholar 

  119. Baritaki S, Katsman A, Chatterjee D, Yeung KC, Spandidos DA, Bonavida B. Regulation of tumor cell sensitivity to TRAIL-induced apoptosis by the metastatic suppressor Raf kinase inhibitor protein via Yin Yang 1 inhibition and death receptor 5 up-regulation. J Immunol. 2007;179:5441–53.

    CAS  PubMed  Google Scholar 

  120. Baritaki S, Suzuki E, Umezawa K, Spandidos DA, Berenson J, Daniels TR, Penichet ML, Jazirehi AR, Palladino M, Bonavida B. Inhibition of Yin Yang 1-dependent repressor activity of DR5 transcription and expression by the novel proteasome inhibitor NPI-0052 contributes to its TRAIL-enhanced apoptosis in cancer cells. J Immunol. 2008;180:6199–210.

    PubMed Central  CAS  PubMed  Google Scholar 

  121. Nieto MA. The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol. 2002;3:155–66.

    CAS  PubMed  Google Scholar 

  122. Palmer MB, Majumder P, Cooper JC, Yoon H, Wade PA, Boss JM. Yin yang 1 regulates the expression of snail through a distal enhancer. Mol Cancer Res. 2009;7:221–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  123. Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, Del Barrio MG, Portillo F, Nieto MA. The transcription factor snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol. 2000;2:76–83.

    CAS  PubMed  Google Scholar 

  124. Beach S, Tang H, Park S, Dhillon AS, Keller ET, Kolch W, Yeung KC. Snail is a repressor of RKIP transcription in metastatic prostate cancer cells. Oncogene. 2008;27:2243–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  125. Baritaki S, Yeung K, Palladino M, Berenson J, Bonavida B. Pivotal roles of snail inhibition and RKIP induction by the proteasome inhibitor NPI-0052 in tumor cell chemoimmunosensitization. Cancer Res. 2009;69:8376–85.

    CAS  PubMed  Google Scholar 

  126. Baritaki S, Huerta-Yepez S, Sahakyan A, Karagiannides I, Bakirtzi K, Jazirehi AR, Bonavida B. Mechanisms of nitric oxide-mediated inhibition of EMT in cancer: inhibition of the metastasis-inducer Snail and induction of the metastasis-suppressor RKIP. Cell Cycle. 2010;9:4931–40.

    PubMed Central  CAS  PubMed  Google Scholar 

  127. Jazirehi AR, Bonavida B. Cellular and molecular signal transduction pathways modulated by rituximab (rituxan, anti-CD20 mAb) in non-Hodgkin’s lymphoma implications in chemosensitization and therapeutic intervention. Oncogene. 2005;24:2121–43.

    CAS  PubMed  Google Scholar 

  128. Chatterjee D, Bai Y, Wang Z, Beach S, Mott S, Roy R, Braastad C, Sun Y, Mukhopadhyay A, Aggarwal BB, Darnowski J, Pantazis P, Wyche J, Fu Z, Kitagwa Y, Keller ET, Sedivy JM, Yeung KC. RKIP sensitizes prostate and breast cancer cells to drug-induced apoptosis. J Biol Chem. 2004;279:17515–23.

    CAS  PubMed  Google Scholar 

  129. Jazirehi AR, Vega MI, Chatterjee D, Goodglick L, Bonavida B. Inhibition of the Raf-MEK1/2-ERK1/2 signaling pathway, Bcl-xL down-regulation, and chemosensitization of non-Hodgkin’s lymphoma B cells by Rituximab. Cancer Res. 2004;64:7117–26.

    CAS  PubMed  Google Scholar 

  130. Thiery JP. Epithelial–mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2:442–54.

    CAS  PubMed  Google Scholar 

  131. Barberà MJ, Puig I, Domínguez D, Julien-Grille S, Guaita-Esteruelas S, Peiró S, Baulida J, Francí C, Dedhar S, Larue L, García de Herreros A. Regulation of Snail transcription during epithelial to mesenchymal transition of tumor cells. Oncogene. 2004;23:7345–54.

    PubMed  Google Scholar 

  132. Ko H, Kim HS, Kim NH, Lee SH, Kim KH, Hong SH, Yook JI. Nuclear localization signals of the E-cadherin transcriptional repressor Snail. Cells Tissues Organs. 2007;185:66–72.

    CAS  PubMed  Google Scholar 

  133. Hirst D, Robson T. Targeting nitric oxide for cancer therapy. J Pharm Pharmacol. 2007;59:3–13.

    CAS  PubMed  Google Scholar 

  134. Mocellin S, Bronte V, Nitti D. Nitric oxide, a double-edged sword in cancer biology: searching for therapeutic opportunities. Med Res Rev. 2007;27:317–52.

    CAS  PubMed  Google Scholar 

  135. Korbelik M, Parkins CS, Shibuya H, Cecic I, Stratford MR, Chaplin DJ. Nitric oxide production by tumour tissue: impact on the response to photodynamic therapy. Br J Cancer. 2000;82:1835–43.

    PubMed Central  CAS  PubMed  Google Scholar 

  136. Reeves KJ, Reed MWR, Brown NJ. Is nitric oxide important in photodynamic therapy?. J Photochem Photobiol. 2009;95:141–7.

    CAS  Google Scholar 

  137. Gupta S, Ahmad N, Mukhtar H. Involvment of nitric oxide during phthalocyanine (Pc4) photodynamic therapy-mediated apoptosis. Cancer Res. 1998;58:1785–8.

    CAS  PubMed  Google Scholar 

  138. McCall TB, Boughton-Smith NK, Palmer RM, Whittle BJ, Mocada S. Synthesis of nitric oxide from l-arginine by neutrophils. Release and interaction with superoxide anion. Biochem J. 1989;261:293–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  139. Mehta J, Lawson DL, Nicolini FA, Ross MH, Player DW. Effects of activated polymorphonuclear leukocytes on vascular smooth muscle tone. Am J Physiol. 1991;261:327–34.

    Google Scholar 

  140. Evans TJ, Buttery LDK, Carpenter A, Springall DR, Polak JM, Cohen J. Cytokine-treated human neutrophils contain inducible nitric oxide synthase that produces nitration of ingested bacteria. Proc Natl Acad Sci USA. 1996;93:9553–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  141. Rapozzi V, Della Pietra E, Zorzet S, Zacchigna M, Bonavida B, Xodo LE. Nitric oxide-mediated activity in anti-cancer photodynamic therapy. Nitric Oxide. 2013;30:26–35.

    CAS  PubMed  Google Scholar 

  142. Weyerbrock A, Osterberg N, Psarras N, Baumer B, Kogias E, Werres A, Bette S, Saavedra JE, Keefer LK, Papazoglou A. JS-K, a glutathione S-transferase-activated nitric oxide donor with antineoplastic activity in malignant gliomas. Neurosurgery. 2012;70:497–510.

    PubMed Central  PubMed  Google Scholar 

  143. O’Connell JB, Maggard MA, Ko CY. Colon cancer survival rates with the new American joint committee on cancer sixth edition staging. J Natl Cancer Inst. 2004;96:1420–5.

    PubMed  Google Scholar 

  144. Pervin S, Singh R, Chaudhuri G. Nitric oxide-induced cytostasis and cell cycle arrest of a human breast cancer cell line (MDA-MB-231): potential role of cyclin D1. Proc Natl Acad Sci USA. 2001;98:3583–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  145. Muir CP, Adams MA, Graham CH. Nitric oxide attenuates resistance to doxorubicin in three-dimensional aggregates of human breast carcinoma cells. Breast Cancer Res Treat. 2006;96:169–76.

    CAS  PubMed  Google Scholar 

  146. Pervin S, Singh R, Gau CL, Edamatsu H, Tamanoi F, Chaudhuri G. Potentiation of nitric oxide-induced apoptosis of MDA-MB-468 cells by farnesyltransferase inhibitor: implications in breast cancer. Cancer Res. 2001;61:4701–6.

    CAS  PubMed  Google Scholar 

  147. Matthews NE, Adams MA, Maxwell LR, Gofton TE, Graham CH. Nitric oxide-mediated regulation of chemosensitivity in cancer cells. J Natl Cancer Inst. 2001;93:1879–85.

    CAS  PubMed  Google Scholar 

  148. Wink DA, Cook JA, Christodoulou D, Krishna MC, Pacelli R, Kim S, DeGraff W, Gamson J, Vodovotz Y, Russo A, Mitchell JB. Nitric oxide and some nitric oxide donor compounds enhance the cytotoxicity of cisplatin. Nitric Oxide. 1997;1:88–94.

    CAS  PubMed  Google Scholar 

  149. Azizzadeh B, Yip HT, Blackwell KE, Horvath S, Calcaterra TC, Buga GM, Ignarro LJ, Wang MB. Nitric oxide improves cisplatin cytotoxicity in head and neck squamous cell carcinoma. Laryngoscope. 2001;111:1896–900.

    CAS  PubMed  Google Scholar 

  150. Perrotta C, Bizzozero L, Falcone S, Rovere-Querini P, Prinetti A, Schuchman EH, Sonnino S, Manfredi AA, Clementi E. Nitric oxide boosts chemoimmunotherapy via inhibition of acid sphingomyelinase in a mouse model of melanoma. Cancer Res. 2007;67:7559–64.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author acknowledges the various students, fellows and collaborators whose published reports were the subject of this review. They are Drs. S Baritaki, J Berenson, D Chatterjee, H Chen, H Garban, F Hongo, S Huerta-Yepez, H Liu, M Vega and K Yeung. The author also acknowledges the Jonsson Comprehensive Cancer Center at UCLA for its assistance. The following funding agencies that supported the various publications referred to in this review (1999-present, in alphabetical order) are listed below: the Bodossaki Foundation, the Boiron Research Foundation, the Department of Defense (DOD)/US Army, DAMD. 17-02-1-0023, the Department of Surgery at the University of Texas Southwestern (Shannon Funds), the Fogarty Fellowships (D43DW0001 13–14), the National Council of Science and Technology, NCI RO1CA107023-02 S1, NIH COBRE Grant Number P20RR17695, PRIN 2009 and FVG 2009 (Italy), Terry Fox Funds Grant HIM/2007/061, UC MEXUS, the UCLA AIDS Institute, the UCLA Gene Therapy Program, the UCLA SPORE in Prostate Cancer, Veterans’ Affairs VISN17 and the Vollmer Foundation. The author also acknowledges the assistance of Samantha Kaufhold, Daphne Liang, Kathy Nguyen and Anna Shvartsur for their assistance in the preparation of this manuscript.

No Conflict Statement

“No potential conflicts of interest were disclosed.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Bonavida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bonavida, B. (2015). Pivotal Role of Nitric Oxide in Chemo and Immuno Sensitization of Resistant Tumor Cells to Apoptosis. In: Bonavida, B. (eds) Nitric Oxide and Cancer: Pathogenesis and Therapy. Springer, Cham. https://doi.org/10.1007/978-3-319-13611-0_12

Download citation

Publish with us

Policies and ethics