Skip to main content

Nitric Oxide: Immune Modulation of Tumor Growth

  • Chapter
  • First Online:

Abstract

Nitric oxide (NO) plays a pivotal role in the physiology of diverse tissues including cells of the immune system. It is well established that the levels of nitric oxide must be regulated carefully to maintain homeostasis. Dysregulation or overproduction of nitric oxide has been implicated in the pathogenesis of many disorders including atherosclerosis, neurodegenerative diseases, autoimmune diseases, and cancer. Tumor-associated generation of NO, predominately via inducible nitric oxide synthase (iNOS), can be produced by the immune-system (dendritic cells, NK cells, mast cells, monocytes, macrophages, Kupffer cells) as well as by other cells involved in tumor growth. Depending upon the levels of NO generated, the potential exists for it to behave like a “double-edged” biological sword. In tumorigenesis assays, both protective and toxic effects of NO generated from immune cells frequently are seen in parallel. Thus, there is no simple, uniform picture of the function of NO in the immune modulation of tumor growth. The striking inter- and intracellular signaling between tumor cells and immune system cells makes it extremely difficult to predict the effect of NOS inhibitors and NO donors. This complexity has delayed evaluation of NO regulatory drugs as frontline therapies for cancer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

NO:

Nitric oxide

iNOS (NOS-II):

Inducible nitric oxide synthase

nNOS (NOS-I):

Neuronal nitric oxide synthase

eNOS (NOS-II):

Endothelial nitric oxide synthase

NK:

Natural killer cells

DC:

Dendritic cells

T reg:

T regulatory cells

IL4:

Interleukin 4

LPS:

Lipopolysaccharide

IFN-γ:

Interferon-γ

IL-10:

Interleukin 10

TGF-β:

Transforming growth factor-β

Bid:

BH3 interacting domain

DnIKK2:

Kinase-defective dominant negative form of IKK2

MCP-1:

Monocyte chemo attractant protein 1

IBD:

Inflammatory bowel disease

UC:

Ulcerative colitis

PNT:

Peroxynitrite radical

PGE2 :

Prostaglandin E2

TNF-α:

Tumor necrosis factor-α

COX-1:

Cyclo-oxygenase-1

COX-2:

Cyclooxygenase-2

NF-kB:

Nuclear factor–κB

VEGF:

Vascular endothelial growth factor

ROS:

Reactive oxygen species

RNS:

Reactive nitrogen species

NSAID:

NOn-steroidal anti-inflammatory drug

NO-NSAID:

NO-releasing NSAID

L-NAME:

L-nitro arginine methyl ester

L-NMA:

N-monomethyl-L-arginine

Apc:

Adenomatouspolyposis coli

CRC:

Colorectal cancer

IL8:

Interleukin 8

TILs:

Tumor-infiltrating lymphocytes

TcR:

T cell receptor

CTLs:

Cytotoxic T lymphocytes

MDSCs:

Myeloid-derived suppressor cells

AOM:

Azoxymethane

Se-PBIT:

Selenium [S,S’-1,4-phenylenebis(1,2-ethanediyl) bis-isothiourea]

GI:

Gastrointestinal

MIP:

Macrophage inflammatory protein

DMH:

Dimethyl hydrazine

MDFs:

Mucin depleted foci

DSS:

Dextran sulfate sodium

PGF2α:

Prostaglandin F2α

TxB2:

Thromboxane B2

References

  1. Oshima H, Bartsch H. Chronic infections and inflammatory processes as cancer risk factors: possible role of nitric oxide in carcinogenesis. Mutation Res. 1994;305:253–64.

    Article  Google Scholar 

  2. Liu RH, Hotchkiss JH. Potential genotoxicity of chronically elevated nitric oxide: a review. Mut Res. 1995;339:73–89.

    Article  CAS  Google Scholar 

  3. Fukumura D, Kashiwagi S, Jain RK. The role of nitric oxide in tumor progression. Nat Rev Cancer. 2006;6:521–34.

    Article  CAS  PubMed  Google Scholar 

  4. Janakiram NB, Rao CV. iNOS-selective inhibitors for cancer prevention: promise and progress. Future Med Chem. 2012;4:2193–204.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Yim CY, Bastian NR, Smith JC, Hibbs Jr JB, Samlowski WE. Macrophage nitric oxide synthesis delays progression of ultraviolet light-induced murine skin cancers. Cancer Res. 1993;53:5507–11.

    CAS  PubMed  Google Scholar 

  6. Farias-Eisner R, Sherman MP, Aeberhard E, Chaudhuri G. Nitric oxide is an important mediator for tumoricidal activity in vivo. Proc Natl Acad Sci U S A. 1994;91:9407–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Rao CV, Reddy BS, Steele VE, Wang CX, Liu X, Ouyang N, Patlolla JM, Simi B, Kopelovich L, Rigas B. Nitric oxide-releasing aspirin and indomethacin are potent inhibitors against colon cancer in azoxymethane-treated rats: effects on molecular targets. Mol Cancer Ther. 2006;5:1530–8.

    Article  CAS  PubMed  Google Scholar 

  8. Rigas B, Kashfi K. Nitric-oxide-donating NSAIDs as agents for cancer prevention. Trends Mol Med. 2004;10:324–30.

    Article  CAS  PubMed  Google Scholar 

  9. Mills CD, Shearer J, Evans R, Caldwell MD. Macrophage arginine metabolism and the inhibition or stimulation of cancer. J Immunol. 1992;149(8):2709–14.

    CAS  PubMed  Google Scholar 

  10. Gerner EW, Meyskens FL. Polyamines and cancer: old molecules, new understanding. Nat Rev Cancer. 2004;4:781–92.

    Article  CAS  PubMed  Google Scholar 

  11. Mohammed A, Janakiram NB, Brewer M, Vedala, Steele VE, Rao CV. Multitargeted low-dose GLAD combination chemoprevention: a novel and promising approach to combat colon carcinogenesis. Neoplasia. 2013;15:481–90.

    Google Scholar 

  12. Liew FY. Interactions between cytokines and nitric oxide. Adv Neuroimmunol. 1995;5:201–9.

    Article  CAS  PubMed  Google Scholar 

  13. Otsuka Y, Nagano K, et al. Inhibition of neutrophil migration by tumor necrosis factor. Ex vivo and in vivo studies in comparison with in vitro effect. J Immunol. 1990;145:2639–43.

    CAS  PubMed  Google Scholar 

  14. Kobayashi Y. The regulatory role of nitric oxide in proinflammatory cytokine expression during the induction and resolution of inflammation. J Leukoc Biol. 2010;88:1157–62.

    Article  CAS  PubMed  Google Scholar 

  15. Mazzoni A, Bronte V, Visintin A, et al. Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. J Immunol. 2002; 168:689–95.

    Article  CAS  PubMed  Google Scholar 

  16. Lejeune P, Lagadec P, Onier N, Pinard D, Ohshima H, Jeannin JF. Nitric oxide involvement intumor-induced immunosuppression. J Immunol.1994;152:5077–83.

    CAS  PubMed  Google Scholar 

  17. Ohshima H, Bartsch H. Chronic infections and inflammatory processes as cancer risk factors: possible role of nitric oxide in carcinogenesis. Mutat Res. 1994;305:253–64.

    Article  CAS  PubMed  Google Scholar 

  18. Ohshima H, Gilibert I, Bianchini F. Induction of DNA strand breakage and base oxidation by nitroxyl anion through hydroxyl radical production. Free Radic Biol Med. 1999;(9–10):1305–13.

    Google Scholar 

  19. Lala PK, Chakraborty C. Role of nitric oxide in carcinogenesis and tumour progression. Lancet Oncol. 2001;2:149–56.

    Article  CAS  PubMed  Google Scholar 

  20. Ambs S, Mofolusara O, Ogunfusika MO, Merriam WG, Bennett WP, Billiard TR, Harris CC. Up-regulation of inducible nitric oxide synthase expression in cancer-prone p53 knockout mice. Proc Natl Acad Sci U S A. 1998;95:8823–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Babykutty S, Suboj P, Srinivas P, Nair AS, Chandramohan K, Gopala S. Insidious role of nitric oxide in migration/invasion of colon cancer cells by upregulating MMP-2/9 via activation of cGMP-PKG-ERK signaling pathways. Clin Exp Metastasis. 2012;29:471–92.

    Article  CAS  PubMed  Google Scholar 

  22. Boughton-Smith NK. Pathological and therapeutic implications for nitric oxide in inflammatory bowel disease. J R Soc Med. 1994;87:312–4.

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Kolios G, Valatas V, Ward S. Nitric oxide in inflammatory bowel disease: a universal messenger in an unsolved puzzle. Immunology. 2004;113:427–37.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Rao CV, Reddy BS, Steele VE, Wang C-X, Liu X, Ouyang N, Patlolla JMR, Simi B, Kopelovich L, Rigas B. Nitric oxide–releasing aspirin and indomethacin are potent inhibitors against colon cancer in azoxymethane-treated rats: effects on molecular targets. Mol Cancer Ther. 2006;5:1530–8.

    Article  CAS  PubMed  Google Scholar 

  25. Jenkins DC, Charles IG, Thomsen LL, Moss DW, Holmes LS, Baylis SA, Rhodes P, Westmore K, Emson PC, Moncada S. Roles of nitric oxide in tumor growth. Proc Natl Acad Sci U S A. 1995;92:4392–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Gochman E1, Mahajna J, Shenzer P, Dahan A, Blatt A, Elyakim R, Reznick AZ. The expression of iNOS and nitrotyrosine in colitis and colon cancer in humans. Acta Histochem. 2012;114:827–35.

    Article  CAS  PubMed  Google Scholar 

  27. Ambs S, Bennett WP, Merriam WG, Ogunfusika MO, Oser SM, Harrington AM, Shields PG, Felley-Bosco E, Hussain SP, Harris CC. Relationship between p53 mutations and inducible nitric oxide synthase expression in human colorectal cancer. J Natl Cancer Inst. 1999;91:86–8.

    Article  CAS  PubMed  Google Scholar 

  28. Ahn B, Ohshima H. Suppression of intestinal polyposis in Apc(Min/+) mice by inhibiting nitric oxide production. Cancer Res. 2001;61:8357–60.

    CAS  PubMed  Google Scholar 

  29. Erdman SE, Rao VP, Poutahidis T, Rogers AB, Taylor CL, Jackson EA, Ge Z, Lee CW, Schauer DB, Wogan GN, Tannenbaum SR, Fox JG. Nitric oxide and TNF-alpha trigger colonic inflammation and carcinogenesis in Helicobacter hepaticus-infected, Rag2-deficient mice. Proc Natl Acad Sci U S A. 2009;106:1027–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Du Q, Zhang X, Liu Q, Zhang X, Bartels CE, Geller DA. Nitric oxide production upregulates Wnt/b-catenin signaling by inhibiting Dickkopf-1. Cancer Res. 2013;73:6526–37.

    Article  CAS  PubMed  Google Scholar 

  31. Janakiram NB, Swamy MV, Patlolla JM, Guruswamy S, Rao CV. A selective iNOS inhibitor N6- iminoethyl-lysine tetrazoleamide (NILT), suppress invasive colonic cancers and improves preventive efficacy of low-dose COX-2 inhibitor, celecoxib in F344 rats. 101st AACR Annual Meeting 2010 held at Washington DC. April 17–21. Volume 70; Abstract 954; 2010.

    Google Scholar 

  32. Rao CV, Kawamori T, Hamid R, Reddy BS. Chemoprevention of colonic aberrant crypt foci by an inducible nitric oxide synthase- selective inhibitor. Carcinogenesis. 1999;20:641–4.

    Article  CAS  PubMed  Google Scholar 

  33. Rao CV, Indranie C, Simi B, Manning PT, Connor JR, Reddy BS. Chemopreventive properties of a selective inducible nitric oxide synthase inhibitor in colon carcinogenesis, administered alone or in combination with celecoxib, a selective cyclooxygenase-2 inhibitor. Cancer Res. 2002;62:165–70.

    CAS  PubMed  Google Scholar 

  34. Thomsen, LL, Scott JMJ, Topley P, Knowles RG, Keerie AJ, Frend AJ. Selective inhibition of inducible nitric oxide synthase inhibits tumor growth in vivo: studies with 1400W, a novel inhibitor. Cancer Res. 1997;57:3300–4.

    CAS  PubMed  Google Scholar 

  35. Scott D, Hull MA, Cartwright EJ, Lam W, Tisbury A, Poulsom R, et al. Lack of inducible nitric oxide synthase promotes intestinal tumorigenesis in the ApcMin/+ mouse. Gastroenterology. 2001;121: 889–99.

    Article  CAS  PubMed  Google Scholar 

  36. Hussain SP, Trivers GE, Hofseth LJ, He P, Shaikh I, Mechanic LE, Doja S, Jiang W, Subleski J, Shorts L, Haines D, Laubach VE, Wiltrout RH, Djurickovic D, Harris CC. Nitric oxide, a mediator of inflammation, suppresses tumorigenesis. Cancer Res. 2004;64:6849–53.

    Article  CAS  PubMed  Google Scholar 

  37. Xu W, Liu L, Charles IG. Microencapsulated iNOS-expressing cells cause tumor suppression in mice. FASEB J. 2002;16:213–5.

    CAS  PubMed  Google Scholar 

  38. Seril DN, Liao J, Yang G-Y. Colorectal carcinoma development in inducible nitric oxide synthase-deficient mice with dextran sulfate sodium-induced ulcerative colitis. Mol Carcinog. 2007;46:341–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Mosser DM, Zhang X. Activation of murine macrophages. Curr Protoc Immunol. 2008. doi:10.1002/0471142735.im1402s83.

    Google Scholar 

  40. Brookes PS, Salinas EP, Darley-Usmar K, Eiserich JP, Freeman BA, Darley-Usmar VM. Concentration-dependent effects of nitric oxide on mitochondrial permeability transition and cytochrome c release. J Biol Chem. 2000;275:20474–9.

    Article  CAS  PubMed  Google Scholar 

  41. Kolb JP. Mechanisms involved in the pro- and anti-apoptotic role of NO in human leukemia. Leukemia. 2000;14:1685–94.

    Article  CAS  PubMed  Google Scholar 

  42. Cai H, Dikalov S, Griendling KK, Harrison DG. Detection of reactive oxygen species and nitric oxide in vascular cells and tissues: comparison of sensitivity and specificity. Methods Mol Med. 2007;139:293–311.

    CAS  PubMed  Google Scholar 

  43. Ignarro IJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc. Natl. Acad. Sci U S A. 1987;84:9265–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Palmer RMJ, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987;327:524–6.

    Article  CAS  PubMed  Google Scholar 

  45. Lancaster JR Jr, Xie K. Tumors face NO problems? Cancer Res. 2006;66:6459–62.

    Article  CAS  PubMed  Google Scholar 

  46. Hussain SP, Hofseth LJ, Harris CC. Radical causes of cancer. Nat Rev Cancer. 2003;3:276–85.

    Article  CAS  PubMed  Google Scholar 

  47. Lamas S, Lowenstein CJ, Michel T. Nitric oxide signaling comes of age:20 years and thriving. Cardiovasc Res. 2007;75:207–9.

    Article  CAS  PubMed  Google Scholar 

  48. Hofseth LJ, Hussain SP, Wogan GN, Harris CC. Nitric oxide in cancer and chemoprevention. Free Radic Biol Med. 2003;34:955–68.

    Article  CAS  PubMed  Google Scholar 

  49. Aiello S, Noris M, Piccinini G, Tomasoni S, Casiraghi F, Bonazzola S, Mister M, Sayegh MH, Remuzzi G. Thymic dendritic cells express inducible nitric oxide synthase and generate nitric oxide in response to self- and alloantigens. J Immunol. 2000;164:4649–58.

    Article  CAS  PubMed  Google Scholar 

  50. Allavena P, Sica A, Solinas G, Porta C, Mantovani A. The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Crit Rev Oncol Hematol. 2008;66:1–9.

    Article  PubMed  Google Scholar 

  51. Bronte V, Zanovello P. Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol. 2005;5:641–54.

    Article  CAS  PubMed  Google Scholar 

  52. Cifone MG, Ulisse S, Santoni A. Natural killer cells and nitric oxide. Int Immunopharmacol. 2001;1:1513–24.

    Article  CAS  PubMed  Google Scholar 

  53. Ostrand-Rosenberg S, Sinha P. Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol. 2009;182:4499–506.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Rotondo R, Bertolotto M, Barisione G, Astigiano S, Mandruzzato S, Ottonello L, Dallegri F, Bronte V, Ferrini S, Barbieri O. Exocytosis of azurophil and arginase 1-containing granules by activated polymorphonuclear neutrophils is required to inhibit T lymphocyte proliferation. J Leukoc Biol. 2011;89: 721–7.

    Article  CAS  PubMed  Google Scholar 

  55. Sica A, Bronte V. Altered macrophage differentiation and immune dysfunction in tumor development. J Clin Invest. 2007;117:1155–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Grisham M, Granger D, Lefer D. Modulation of leukocyte-endothelial interactions by reactive metabolites of oxygen and nitrogen: relevance to ischemic heart disease. Free Radic Res. 1998;25:404–33.

    Article  CAS  Google Scholar 

  57. Bogdan C. Nitric oxide and the immune response. Nat Immunol. 2001;2:907–15.

    Article  CAS  PubMed  Google Scholar 

  58. Bogdan C. The function of nitric oxide in the immune system. In: Mayer B, editor. Handbook of experimental pharmacology. Nitric oxide. Heidelberg: Springer; 2000. pp. 443–92.

    Chapter  Google Scholar 

  59. Cheria R, Ganu R. Stromal cell-derived factor 1a—induced chemotaxis in T cells is mediated by nitric oxide signalling pathways. J Immunol. 2001;166:3067–74.

    Article  Google Scholar 

  60. Atochina O, Daly-Engel T, Piskorska D, McGuire E, Harn DA. A schistosome-expressed immunomodulatory glycoconjugate expands peritoneal Gr1 + macrophages that suppress naive CD4 + T cell proliferation via an IFN-γ and nitric oxide-dependent mechanism. J Immunol. 2001;167:4293–302.

    Article  CAS  PubMed  Google Scholar 

  61. Janakiram NB, Mohammed A, Bryant T, Brewer M, Biddick L, Lightfoot S, Lang ML, Rao CV. Adoptive transfer of regulatory T cells promotes intestinal tumorigenesis and is associated with decreased NK cells and IL-22 binding protein. Mol Carcinogenesis. 2014. doi:10.1002/mc.22168.

    Google Scholar 

  62. Aiello S, Cassis P, Cassis L, Tomasoni S, Benigni A, Pezzotta A, Cavinato RA, Cugini D, Azzollini N, Mister M, Longaretti L, Thomson AW, Remuzzi G, Noris M. DnIKK2-transfected dendritic cells induce a novel population of inducible nitric oxide synthase-expressing CD4+ CD25—cells with tolerogenic properties. Transplantation. 2007;83:474–84.

    Article  CAS  PubMed  Google Scholar 

  63. Niedbala W, Cai B, Liu H, Pitman N, Chang L, Liew FY. Nitric oxide induces CD4+ CD25+ Foxp3 regulatory T cells from CD4+ CD25–T cells via p53, IL-2, and OX40. Proc Natl Acad Sci U S A. 2007;104:15478–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Brito C, Naviliat M, Tiscornia AC, Vuillier F, Gualco G, Dighiero G, Radi R, Cayota AM. Peroxy nitrite inhibits T lymphocyte activation and proliferation by promoting impairment of tyrosine phosphorylation and peroxynitrite-driven apoptotic death. J Immunol. 1999;162:3356–66.

    CAS  PubMed  Google Scholar 

  65. Michel T, Feron O. Nitricoxidesynthases:which,where,how,andwhy? J Clin Invest. 1997;100:2146–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Haqqani AS, Kelly JF, Birnboim HC. Selective nitration of histone tyrosine residues in vivo in mutatect tumors. J Biol Chem. 2002;277: 3614–21.

    Article  CAS  PubMed  Google Scholar 

  67. Ekmekcioglu S, Ellerhorst J, Smid CM, Prieto VG, Munsell M, Buzaid AC, Grimm EA. Inducible nitric oxide synthase and nitrotyrosine in human metastatic melanoma tumors correlate with poor survival. Clin Cancer Res. 2000;6:4768–75.

    CAS  PubMed  Google Scholar 

  68. Moulian N, Truffault F, Gaudry-Talarmain YM, Serraf A, Berrih-Aknin S. Invivo and invitro apoptosis of human thymocytes are associated with nitrotyrosine formation. Blood. 2001; 97:3521–30.

    Article  CAS  PubMed  Google Scholar 

  69. Bronte V, Serafini P, De Santo C, Marigo I, Tosello V, Mazzoni A, Segal DM, Staib C, Lowel M, Sutter G, Colombo MP, Zanovello P. IL-4-induced arginase 1 suppresses alloreactive T cells in tumorbearing mice. J Immunol. 2003;170:270–8.

    Article  CAS  PubMed  Google Scholar 

  70. Vickers SM, MacMillan-Crow LA, Green M, Ellis C, Thompson JA. Association of increased immunostaining for inducible nitric oxide synthase and nitrotyrosinewith fibroblast growth factor transformation in pancreatic cancer. Arch Surg. 1999;134:245–51.

    Article  CAS  PubMed  Google Scholar 

  71. Cobbs CS, Whisenhunt TR, Wesemann DR, Harkins LE, Van Meir EG, Samanta M. Inactivation of wild-type p53 protein function by reactive oxygen and nitrogen species in malignant glioma cells. Cancer Res. 2003;63:8670–3.

    CAS  PubMed  Google Scholar 

  72. Kinnula VL, Torkkeli T, Kristo P, Sormunen R, Soini Y, Pääkkö P, Ollikainen T, Kahlos K, Hirvonen A, Knuutila S. Ultrastructural and chromosomal studies on manganese superoxide dismutase in malignant mesothelioma. Am J Respir Cell Mol Biol. 2004;31:147–53.

    Article  CAS  PubMed  Google Scholar 

  73. Nakamura Y, Yasuoka H, Tsujimoto M, Yoshidome K, Nakahara M, Nakao K, Nakamura M, Kakudo K. Nitric oxide in breast cancer: induction of vascular endothelial growth factor-C and correlation with metastasis and poor prognosis. Clin Cancer Res. 2006;12:1201–7.

    Article  CAS  PubMed  Google Scholar 

  74. Ekmekcioglu S, Ellerhorst JA, Prieto VG, Johnson MM, Broemeling LD, Grimm EA. Tumor iNOS predicts poor survival for stage III melanoma patients. Int J Cancer. 2006;119:861–6.

    Article  CAS  PubMed  Google Scholar 

  75. Szaleczky E1, Prónai L, Nakazawa H, Tulassay Z. Evidence of in vivo peroxynitrite formation in patients with colorectal carcinoma, higher plasma nitrate/nitrite levels, and lower protection against oxygen free radicals. J Clin Gastroenterol. 2000;30:47–51.

    Article  CAS  PubMed  Google Scholar 

  76. Bronte V, Casic T, Gri G, Gallana K, Borsellino G, Marrigo I, Battistini L, Iafrate M, Prayer-Galetti T, Pagano F, Viola A. Boosting antitumor responses of T lymphocytes infiltrating human prostate cancers. J Exp Med. 2005;201:1257–68.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Nagaraj S, Gupta K, Pisarev V, Kinarsky L, Sherman S, Kang L, Herber DL, Schneck J. Gabrilovich D Altered recognition of antigen is a mechanism of CD8þT cell tolerance in cancer. Nat Med. 2007;13:828–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Birnboim HC, Lemay AM, Lam DK, Goldstein R, Webb JR. Cutting associated marker 3-nitrotyrosine evade central tolerance and elicit a robust cell-mediated immune response. J Immunol. 2003;171:528–32.

    Article  CAS  PubMed  Google Scholar 

  79. Hardy LL, Wick DA, Webb JR. Conversion of tyrosine to the inflammation-associated analog 30-nitrotyrosine at either TCR- or MHC contact positions can profoundly affect recognition of the MHC class I-restricted epitope of lymphocytic choriomeningitis virus glycoprotein 33 by CD8 T cells. J Immunol. 2008;180:5956–62.

    Article  CAS  PubMed  Google Scholar 

  80. Nagaraj S, Schrum AG, Cho HI, Celis E, Gabrilovich DI. Mechanism of T cell tolerance induced by myeloid-derived suppressor cells. J Immunol. 2010;184:3106–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Lu T, Ramakrishnan R, Altiok S, Youn JI, Cheng P, Celis E, et al. Tumor infiltrating myeloid cells induce tumor cell resistance to cytotoxic T cells in mice. J Clin Invest. 2011;121:4015–29.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Molon B, Ugel S, Del Pozzo F, Soldani C, Zilio S, Avella D, De Palma A, Mauri P, Monegal A, Rescigno M, Savino B, Colombo P, Jonjic N, Pecanic S, Lazzarato L, Fruttero R, Gasco A, Bronte V, Viola A. Chemokine nitration prevents intratumoral infiltration of antigen-specific T cells. J Exp Med. 2011;208:1949–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Allavena P, Bianchi G, Zhou D, van Damme J, Jilek P, Sozzani S, Montavani A. Induction of natural killer cell migration by monocyte chemotactic protein-1, -2 and -3. Eur J Immunol. 1994;24:3233–6.

    Article  CAS  PubMed  Google Scholar 

  84. Dalton D, Haynes L, Chu C, Swain S, Wittmer S. Interferon-g eliminates responding CD4 T cells during mycobacterial infection by inducing apoptosis of activated CD4 T cells. J Exp Med. 2000;192:117–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Kroncke K, Fehsel K, Kolb-Bachofen V. Inducible nitric oxide synthase in human disease. Clin Exp Immunol. 1998;113:147–56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Iniesta V, Gomez-Nieto LC, Corraliza I. Theinhibition of arginase by N(omega)-hydroxy-L-arginine controls the growth of Leishmania inside macrophages. J Exp Med. 2001;193:777–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Weller R, Pattullo S, Smith L, Golden M, Ormerod A, Benjamin N. Nitric oxide Is generat on the skin surface by reduction of sweat nitrate. J Investig Dermatol. 1996;107:327–31.

    Article  CAS  PubMed  Google Scholar 

  88. Abramson SB, Attur M, Amin AR, Clancy R. Nitric oxide and inflammatory mediators in the perpetuation of osteoarthritis. Curr Rheumatol Rep. 2001;3:535–41.

    Article  CAS  PubMed  Google Scholar 

  89. Kwak J, Han MK, Choi KS, Park IH, Park SY, Sohn MH, Kim UH, McGregor JR, Samlowski WE, Yim CY. Cytokines secreted by lymphokine-activated killer cells induce endogenous nitric oxide synthesis and apoptosis in DLD-a colon cancer cells. Cellular Immunology. 2000;203:84–94.

    Article  CAS  PubMed  Google Scholar 

  90. Del Soldato P, Sorrentino R, Pinto A. NO-aspirins, a class of new-inflammatory and anti-thrombotic agents. Trends Pharmacol Sci. 1999;20:319–23.

    Article  PubMed  Google Scholar 

  91. Fiorucci S, Antonelli E, Santucci L, Morelli O, Miglietti M, Federici B, Mannucci R, Del Soldato P, Morelli A. Gastrointestinal safety of nitric oxide derived aspirin is related to inhibition if ICE-like cysteine proteases in rats. Gastroenterology. 1999;116:1089–106.

    Article  CAS  PubMed  Google Scholar 

  92. Fiorucci S, Santucci L, Antonelli E, Distrutti E, Del Sero G, Morelli O, Romani L, Federici B, Del Soldato P, Morelli A. NO aspirin protects from T cell-mediated liver injury by inhibiting caspase dependent processing of Th1-like cytokines. Gastroenterology. 2000;118:404–21.

    Article  CAS  PubMed  Google Scholar 

  93. Fiorucci S, Santucci L, Cirino G, Mencarelli A, Familiari L, Soldato PD, Morelli A. IL-1Bb converting enzyme is a target for nitric oxide-releasing aspirin: new insights in the antiinflammatory mechanism of nitric oxide-releasing nonsteroidal antiinflammatory drugs. J Immunol. 2000;165:5245–54.

    Article  CAS  PubMed  Google Scholar 

  94. Williams JL, Kashfi K, Ouyang N, del Soldato P, Kopelovich L, Rigas B. NO-donating aspirin inhibits intestinal carcinogenesis in Min (APC(Min/+) mice. Biochem Biophys Res Commun. 2004;313:784–8.

    Article  CAS  PubMed  Google Scholar 

  95. Bak AW, McKnight W, Li P, Del Soldato P, Calignano A, Cirino G, Wallace JL. Cyclooxygenase-independent chemoprevention with an aspirin derivative in a rat model of colonic adenocarcinoma. Life Sci. 1998;62:L367–73.

    Article  Google Scholar 

  96. Pathi SS, Jutooru I, Chadalapaka G, Sreevalsan S, Anand S, Thatcher GRJ, Safe S. GT-094, a NO-NSAID, inhibits colon cancer cell growth by activation of a reactive oxygen species-MicroRNA-27a: ZBTB10-specificity protein pathway. Mol Cancer Res. 2011;9:195–205.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors thank Dr. Julie Sando for her critical reading of the chapter. The works cited were supported by in part by grant NIH-NCI R01 CA109247 and the Kerley-Cade Chair Endowment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chinthalapally V. Rao Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Janakiram, N., Rao, C. (2015). Nitric Oxide: Immune Modulation of Tumor Growth. In: Bonavida, B. (eds) Nitric Oxide and Cancer: Pathogenesis and Therapy. Springer, Cham. https://doi.org/10.1007/978-3-319-13611-0_11

Download citation

Publish with us

Policies and ethics