Skip to main content

Regulation of Anti-Tumor Immune Responses

  • Chapter
  • First Online:
Nitric Oxide and Cancer: Pathogenesis and Therapy
  • 715 Accesses

Abstract

Nitric oxide has a dual role in both regulation of immune homeostatsis and in responses to pathogens. It is therefore not surprising that a similar duality exists in the response against neoplastic cells. At the same time as NO can exert cytotoxicity against tumor cells it can also inhibit immune reactivity against these cells. The following chapter will recapitulate the basal roles of NO in immune homestasis and immune reactivity against pathogens followed by a more detailed review of the role of NO in immune reactivity against tumors. In experimental therapy against tumors, the positive effects of NO can thus be manipulated by administration of NO donors or by inducing NO secretion from innate immune cells. On the other hand, inhibition of NO release by NOS inhibitors or by inhibition of molecules upstream of NOS induction can boost adaptive immune responses mainly by T cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APC:

antigen presenting cell

CCL-2:

chemokine, also MCP-1 (monocyte chemotactic protein)

CNS:

central nervous system

COX:

cyclooxygenase

DC:

dendritic cell

eNOS:

endothelial nitric oxide synthase

FAS-L:

FAS-ligand; death receptor ligand

IFNγ:

Interferon gamma

GM-CSF:

granulocyte-macrphage colony stimulating factor

G-MDSC:

granulocytic-myeloid derived suppressor cells

HIF1α:

hypoxia inducible factor1-alfa

IL-1β:

interleukin-1beta

IL-2:

interleukin-2

IL-6:

interleukin-6

IL-10:

interleukin-10

IL-12:

interleukin-12

IL-18:

interleukin-18

IDO:

indoleamine 2, 3-dioxygenase

iNOS:

inducible endothelial nitric oxide synthase

LEC:

lymphatic endothelial cells

L-NAME:

L-NG-nitroarginine methyl ester

L-NIL:

N6- (1- iminoethyl)- L- lysine, dihydrochloride

L-NMMA:

N-Monomethyl-L-arginine, monoacetate

NSAID:

non steroidal anti-inflammatory drug

LPS:

lipopolysaccarhide

M1:

type 1 macrophage

MEG:

mercapto ethyl guandinidine

MDSC:

myeloid derived suppressor cells

Mo:

macrophage

Mo-MDSC:

monocytic-myeloid derived suppressor cells

MSC:

mesenchymal stromal cells

NF-κβ:

Nuclear factor kappa beta

NK:

natural killer

PD-L1:

programmed death receptor-1ligand; also B7-H1

PGE2 :

prostaglandin E2

ROS:

reactive oxygen species

RNS:

reactive nitrogen species

STAT3:

signal transducer and activator of transcription 3

TAA:

tumor associated antigens

TAM:

tumor associated macrophages

T cell:

T lymphocyte

TCR:

T cell receptor

TGFβ:

Transforming growth factor beta

Th1:

type 1 T helper lymphocyte

Th 17:

type 17 T helper lymphocyte

TNFα:

tumor necrosis factor-alpha

T reg:

regulatory T lymphocyte

TRAIL:

TNF-related apoptosis-inducing ligand

VEGF:

vascular endothelia l growth factor

References

  1. Coulie PG, Van den Eynde BJ, van der Bruggen P, Boon T. Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat Rev Cancer. 2014;14:135–46.

    Article  CAS  PubMed  Google Scholar 

  2. Palucka K, Banchereau J. Cancer immunotherapy via dendritic cells. Nat Rev Cancer. 2012;12:265–77.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Restifo NP, Dudley ME, Rosenberg SA. Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol. 2012;12:269–81.

    Article  CAS  PubMed  Google Scholar 

  4. Bogdan C. Nitric oxide and the immune response. Nat Immunol. 2001;2:907–16.

    Article  CAS  PubMed  Google Scholar 

  5. Niedbala W, Wei XQ, Campbell C, Thomson D, Komai-Koma M, Liew FY. Nitric oxide preferentially induces type 1 T cell differentiation by selectively up-regulating IL-12 receptor beta 2 expression via cGMP. Proc Natl Acad Sci U S A. 2002;99:16186–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Nathan CF, Murray HW, Wiebe ME, Rubin BY. Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J Exp Med. 1983;158:670–89.

    Article  CAS  PubMed  Google Scholar 

  7. Nathan CF, Prendergast TJ, Wiebe ME, Stanley ER, Platzer E, Remold HG, Welte K, Rubin BY, Murray HW. Activation of human macrophages. Comparison of other cytokines with interferon-gamma. J Exp Med. 1984;160:600–5.

    Article  CAS  PubMed  Google Scholar 

  8. Stuehr DJ, Gross SS, Sakuma I, Levi R, Nathan CF. Activated murine macrophages secrete a metabolite of arginine with the bioactivity of endothelium-derived relaxing factor and the chemical reactivity of nitric oxide. J Exp Med. 1989;169:1011–20.

    Article  CAS  PubMed  Google Scholar 

  9. Aiello S, Noris M, Piccinini G, Tomasoni S, Casiraghi F, Bonazzola S, Mister M, Sayegh MH, Remuzzi G. Thymic dendritic cells express inducible nitric oxide synthase and generate nitric oxide in response to self- and alloantigens. J Immunol. 2000;164:4649–58.

    Article  CAS  PubMed  Google Scholar 

  10. Chen C, Lee WH, Zhong L, Liu CP. Regulatory T cells can mediate their function through the stimulation of APCs to produce immunosuppressive nitric oxide. J Immunol. 2006;176:3449–60.

    Article  CAS  PubMed  Google Scholar 

  11. Niedbala W, Cai B, Liu H, Pitman N, Chang L, Liew FY. Nitric oxide induces CD4+ CD25+ Foxp3 regulatory T cells from CD4+ CD25 T cells via p53, IL-2, and OX40. Proc Natl Acad Sci U S A. 2007;104:15478–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Lukacs-Kornek V, Malhotra D, Fletcher AL, Acton SE, Elpek KG, Tayalia P, Collier AR, Turley SJ. Regulated release of nitric oxide by nonhematopoietic stroma controls expansion of the activated T cell pool in lymph nodes. Nat Immunol. 2011;12:1096–104.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Huang FP, Niedbala W, Wei XQ, Xu D, Feng GJ, Robinson JH, Lam C, Liew FY. Nitric oxide regulates Th1 cell development through the inhibition of IL-12 synthesis by macrophages. Eur J Immunol. 1998;28:4062–70.

    Article  CAS  PubMed  Google Scholar 

  14. Ibiza S, Pérez-Rodríguez A, Ortega A, Martínez-Ruiz A, Barreiro O, García-Domínguez CA, Víctor VM, Esplugues JV, Rojas JM, Sánchez-Madrid F, Serrador JM. Endothelial nitric oxide synthase regulates N-Ras activation on the Golgi complex of antigen-stimulat T cells. Proc Natl Acad Sci U S A. 2008;105:10507–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Ibiza S, Víctor VM, Boscá I, Ortega A, Urzainqui A, O’Connor JE, Sánchez-Madrid F, Esplugues JV, Serrador JM. Endothelial nitric oxide synthase regulates T cell receptor signaling at the immunological synapse. Immunity. 2006;24:753–65.

    Article  CAS  PubMed  Google Scholar 

  16. Koncz A, Pasztoi M, Mazan M, Fazakas F, Buzas E, Falus A, Nagy G. Nitric oxide mediates T cell cytokine production and signal transduction in histidine decarboxylase knockout mice. J Immunol. 2007;179:6613–9.

    Article  CAS  PubMed  Google Scholar 

  17. Dugast AS, Haudebourg T, Coulon F, Heslan M, Haspot F, Poirier N, Vuillefroy de Silly R, Usal C, Smit H, Martinet B, Thebault P, Renaudin K, Vanhove B. Myeloid-derived suppressor cells accumulate in kidney allograft tolerance and specifically suppress effector T cell expansion. J Immunol. 2008;180:7898–906.

    Article  CAS  PubMed  Google Scholar 

  18. Ren G, Su J, Zhao X, Zhang L, Zhang J, Roberts AI, Zhang H, Das G, Shi Y. Apoptotic cells induce immunosuppression through dendritic cells: critical roles of IFN-gamma and nitric oxide. J Immunol. 2008;181:3277–84.

    Article  CAS  PubMed  Google Scholar 

  19. Sato K, Ozaki K, Oh I, Meguro A, Hatanaka K, Nagai T, Muroi K, Ozawa K. Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood. 2007;109:228–34.

    Article  CAS  PubMed  Google Scholar 

  20. Niedbala W, Besnard AG, Jiang HR, Alves-Filho JC, Fukada SY, Nascimento D, Mitani A, Pushparaj P, Alqahtani MH, Liew FY. Nitric oxide-induced regulatory T cells inhibit Th17 but not Th1 cell differentiation and function. J Immunol. 2013;191:164–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Vig M, Srivastava S, Kandpal U, Sade H, Lewis V, Sarin A, George A, Bal V, Durdik JM, Rath S. Inducible nitric oxide synthase in T cells regulates T cell death and immune memory. J Clin Investig. 2004;113:1734–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Ling W, Zhang J, Yuan Z, Ren G, Zhang L, Chen X, Rabson AB, Roberts AI, Wang Y, Shi Y. Mesenchymal stem cells use IDO to regulate immunity in tumor microenvironment. Cancer Res. 2014;74:1576–87.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Zinöcker S, Vaage JT. Rat mesenchymal stromal cells inhibit T cell proliferation but not cytokine production through inducible nitric oxide synthase. Front Immunol. 2012;3:62.

    PubMed Central  PubMed  Google Scholar 

  24. Arakawa Y, Qin J, Chou HS, Bhatt S, Wang L, Stuehr D, Ghosh A, Fung JJ, Lu L, Qian S. Cotransplantation with myeloid-derived suppressor cells protects cell transplants: a crucial role of inducible nitric oxide synthase. Transplantation. 2014;97:740–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Bhatt S, Qin J, Bennett C, Qian S, Fung JJ, Hamilton TA, Lu L. All-trans retinoic acid induces arginase-1 and inducible nitric oxide synthase-producing dendritic cells with T cell inhibitory function. J Immunol. 2014;192:5098–108.

    Article  CAS  PubMed  Google Scholar 

  26. Darwiche SS, Pfeifer R, Menzel C, Ruan X, Hoffman M, Cai C, Chanthaphavong RS, Loughran P, Pitt BR, Hoffman R, Pape HC, Billiar TR. Inducible nitric oxide synthase contributes to immune dysfunction following trauma. Shock. 2012;38:499–507.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Brito C, Naviliat M, Tiscornia AC, Vuillier F, Gualco G, Dighiero G, Radi R, Cayota AM. Peroxynitrite inhibits T lymphocyte activation and proliferation by promoting impairment of tyrosine phosphorylation and peroxynitrite-driven apoptotic death. J Immunol. 1999;162:3356–66.

    CAS  PubMed  Google Scholar 

  28. Cifone MG, D’Alò S, Parroni R, Millimaggi D, Biordi L, Martinotti S, Santoni A. Interleukin-2-activated rat natural killer cells express inducible nitric oxide synthase that contributes to cytotoxic function and interferon-gamma production. Blood. 1999;93:3876–84.

    CAS  PubMed  Google Scholar 

  29. Jyothi MD, Khar A. Induction of nitric oxide production by natural killer cells: its role in tumor cell death. Nitric Oxide. 1999;3:409–18.

    Article  CAS  PubMed  Google Scholar 

  30. Hagemann T, Lawrence T, McNeish I, Charles KA, Kulbe H, Thompson RG, Robinson SC, Balkwill FR. “Re-educating” tumor-associated macrophages by targeting NF-{kappa}B. J Exp Med. 2008;205:1261–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Samdani AF, Kuchner EB, Rhines L, Adamson DC, Lawson C, Tyler B, Brem H, Dawson VL, Dawson TM. Astroglia induce cytotoxic effects on brain tumors via a nitric oxide-dependent pathway both in vitro and in vivo. Neurosurgery. 2004;54:1231–8.

    Article  PubMed  Google Scholar 

  32. Jeannin JF, Leon L, Cortier M, Sassi N, Paul C, Bettaieb A. Nitric oxide-induced resistance or sensitization to death in tumor cells. Nitric Oxide. 2008;19:158–63.

    Article  CAS  PubMed  Google Scholar 

  33. Bonavida B, Baritaki S, Huerta-Yepez S, Vega MI, Chatterjee D, Yeung K. Novel therapeutic applications of nitric oxide donors in cancer: roles in chemo- and immunosensitization to apoptosis and inhibition of metastases. Nitric Oxide. 2008;19:152–7.

    Article  CAS  PubMed  Google Scholar 

  34. Vicetti Miguel RD, Cherpes TL, Watson LJ, McKenna KC. CTL induction of tumoricidal nitric oxide production by intratumoral macrophages is critical for tumor elimination. J Immunol. 2010;185:6706–18.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Weiss JM, Ridnour LA, Back T, Hussain SP, He P, Maciag AE, Keefer LK, Murphy WJ, Harris CC, Wink DA, Wiltrout RH. Macrophage-dependent nitric oxide expression regulates tumor cell detachment and metastasis after IL-2/anti-CD40 immunotherapy. J Exp Med. 2010;207:2455–67.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Barsoum IB, Hamilton TK, Li X, Cotechini T, Miles EA, Siemens DR, Graham CH. Hypoxia induces escape from innate immunity in cancer cells via increased expression of ADAM10: role of nitric oxide. Cancer Res. 2011;71:7433–41.

    Article  CAS  PubMed  Google Scholar 

  37. Siemens DR, Hu N, Sheikhi AK, Chung E, Frederiksen LJ, Pross H, Graham CH. Hypoxia increases tumor cell shedding of MHC class I chain-related molecule: role of nitric oxide. Cancer Res. 2008;68:4746–53.

    Article  CAS  PubMed  Google Scholar 

  38. Hwang SY, Yoo BC, Jung JW, Oh ES, Hwang JS, Shin JA, Kim SY, Cha SH, Han IO. Induction of glioma apoptosis by microglia-secreted molecules: the role of nitric oxide and cathepsin B. Biochim Biophysic Acta. 2009;1793:1656–68.

    Article  CAS  Google Scholar 

  39. Bronte V, Kasic T, Gri G, Gallana K, Borsellino G, Marigo I, Battistini L, Iafrate M, Prayer-Galetti T, Pagano F, Viola A. Boosting antitumor responses of T lymphocytes infiltrating human prostate cancers. J Exp Med. 2005;201:1257–68.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Hosoi A, Matsushita H, Shimizu K, Fujii S, Ueha S, Abe J, Kurachi M, Maekawa R, Matsushima K, Kakimi K. Adoptive cytotoxic T lymphocyte therapy triggers a counter-regulatory immunosuppressive mechanism via recruitment of myeloid-derived suppressor cells. Int J Cancer. 2014;134:1810–22.

    Article  CAS  PubMed  Google Scholar 

  41. Serafini P, Meckel K, Kelso M, Noonan K, Califano J, Koch W, Dolcetti L, Bronte V, Borrello I. Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. J Exp Med. 2006;203:2691–702.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Kusmartsev SA, Li Y, Chen SH. Gr-1+ myeloid cells derived from tumor-bearing mice inhibit primary T cell activation induced through CD3/CD28 costimulation. J Immunol. 2000;165:779–85.

    Article  CAS  PubMed  Google Scholar 

  43. Koblish HK, Hunter CA, Wysocka M, Trinchieri G, Lee WM. Immune suppression by recombinant interleukin (rIL)-12 involves interferon gamma induction of nitric oxide synthase 2 (iNOS) activity: inhibitors of NO generation reveal the extent of rIL-12 vaccine adjuvant effect. J Exp Med. 1998;188:1603–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Movahedi K, Guilliams M, Van den Bossche J, Van den Bergh R, Gysemans C, Beschin A, De Baetselier P, Van Ginderachter JA. Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T-cell suppressive activity. Blood. 2008;111:4233–44.

    Article  CAS  PubMed  Google Scholar 

  45. Dupuis M, De Jesús Ibarra-Sánchez M, Tremblay ML, Duplay P. Gr-1+ myeloid cells lacking T cell protein tyrosine phosphatase inhibit lymphocyte proliferation by an IFN-gamma- and nitric oxide-dependent mechanism. J Immunol. 2003;171:726–32.

    Article  CAS  PubMed  Google Scholar 

  46. Sierra RA, Thevenot P, Raber P, Cui Y, Parsons C, Ochoa AC, Trillo-Tinoco J, Del Valle L, Rodriguez PC. Rescue of Notch 1 signaling in antigen-specific CD8+  T cells overcomes tumor-induced T cell suppression and enhances immunotherapy in cancer. Cancer Immunol Res. 2014;2:800–11.

    Article  CAS  PubMed  Google Scholar 

  47. Yan L, Singh LS, Zhang L, Xu Y. Role of OGR1 in myeloid-derived cells in prostate cancer. Oncogene. 2014;33:157–164.

    Article  CAS  PubMed  Google Scholar 

  48. Hu X, Li B, Li X, Zhao X, Wan L, Lin G, Yu M, Wang J, Jiang X, Feng W, Qin Z, Yin B, Li Z. Transmembrane TNF-a promotes suppressive activities of myeloid-derived suppressor cells via TNFR2. J Immunol. 2014;192:1320–31.

    Article  CAS  PubMed  Google Scholar 

  49. Kim YS, Kim YJ, Lee JM, Kim EK, Park YJ, Choe SK, Ko HJ, Kang CY. Functional changes in myeloid-derived suppressor cells (MDSCs) during tumor growth: FKBP51 contributes to the regulation of the immunosuppressive function of MDSCs. J Immunol. 2012;188:4226–34.

    Article  CAS  PubMed  Google Scholar 

  50. Corzo CA, Condamine T, Lu L, Cotter MJ, Youn JI, Cheng P, Cho HI, Celis E, Quiceno DG, Padhya T, McCaffrey TV, McCaffrey JC, Gabrilovich DI. HIF1α regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J Exp Med. 2010;207:2439–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Soroceanu L, Matlaf L, Bezrookove V, Harkins L, Martinez R, Greene M, Soteropoulos P, Cobbs CS. Human cytomegalovirus US28 found in glioblastoma promotes an invasive and angiogenic phenotype. Cancer Res. 2011;71:6643–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Mazzoni A, Bronte V, Visintin A, Spitzer JH, Apolloni E, Serafini P, Zanovello P, Segal DM. Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. J Immunol. 2002;168:689–95.

    Article  CAS  PubMed  Google Scholar 

  53. Yamazaki T, Akiba H, Koyanagi A, Azuma M, Yagita H, Okumura K. Blockade of B7-H1 on macrophages suppresses CD4+ T cell proliferation by augmenting IFN-gamma-induced nitric oxide production. J Immunol. 2005;175:1586–92.

    Article  CAS  PubMed  Google Scholar 

  54. Martino A, Badell E, Abadie V, Balloy V, Chignard M, Mistou MY, Combadière B, Combadière C, Winter N. Mycobacterium bovis bacillus Calmette-Guérin vaccination mobilizes innate myeloid-derived suppressor cells restraining in vivo T cell priming via IL-1R-dependent nitric oxide production. J Immunol. 2010;184:2038–47.

    Article  CAS  PubMed  Google Scholar 

  55. Johansson AC, Hegardt P, Janelidze S, Visse E, Widegren B, Siesjö P. Enhanced expression of iNOS intratumorally and at the immunization site after immunization with IFNgamma-secreting rat glioma cells. J Neuroimmunol. 2002;123:135–43.

    Article  CAS  PubMed  Google Scholar 

  56. van der Veen RC, Dietlin TA, Hofman FM. Tissue expression of inducible nitric oxide synthase requires IFN-gamma production by infiltrating splenic T cells: more evidence for immunosuppression by nitric oxide. J Neuroimmunol. 2003;145:86–90.

    Article  PubMed  Google Scholar 

  57. Shen SC, Wu MS, Lin HY, Yang LY, Chen YH, Chen YC. Reactive oxygen species-dependent nitric oxide production in reciprocal interactions of glioma and microglial cells. J Cell Physiol. 2014;229:2015–26.

    Article  CAS  PubMed  Google Scholar 

  58. Ochs K, Sahm F, Opitz CA, Lanz TV, Oezen I, Couraud PO, von Deimling A, Wick W, Platten M. Immature mesenchymal stem cell-like pericytes as mediators of immunosuppression in human malignant glioma. J Neuroimmunol. 2013;265(1–2):106–16.

    Article  CAS  PubMed  Google Scholar 

  59. Molon B, Ugel S, Del Pozzo F, Soldani C, Zilio S, Avella D, De Palma A, Mauri P, Monegal A, Rescigno M, Savino B, Colombo P, Jonjic N, Pecanic S, Lazzarato L, Fruttero R, Gasco A, Bronte V, Viola A. Chemokine nitration prevents intratumoral infiltration of antigen-specific T cells. J Exp Med. 2011;208:1949–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Egilmez NK, Harden JL, Virtuoso LP, Schwendener RA, Kilinc MO. Nitric oxide short-circuits interleukin-12-mediated tumor regression. Cancer Immunol Immunother. 2011;60:839–45.

    Article  CAS  PubMed  Google Scholar 

  61. De Santo C, Serafini P, Marigo I, Dolcetti L, Bolla M, Del Soldato P, Melani C, Guiducci C, Colombo MP, Iezzi M, Musiani P, Zanovello P, Bronte V. Nitroaspirin corrects immune dysfunction in tumor-bearing hosts and promotes tumor eradication by cancer vaccination. Proc Natl Acad Sci U S A. 2005;102:4185–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Perrotta C, Falcone S, Capobianco A, Camporeale A, Sciorati C, De Palma C, Pisconti A, Rovere-Querini P, Bellone M, Manfredi AA, Clementi E. Nitric oxide confers therapeutic activity to dendritic cells in a mouse model of melanoma. Cancer Res. 2004;64:3767–71.

    Article  CAS  PubMed  Google Scholar 

  63. Hegardt P, Widegren B, Li L, Sjögren B, Kjellman C, Sur I, Sjögren HO. Nitric oxide synthase inhibitor and IL-18 enhance the anti-tumor immune response of rats carrying an intrahepatic colon carcinoma. Cancer Immunol Immunother. 2001;50:491–501.

    Article  CAS  PubMed  Google Scholar 

  64. Hegardt P, Widegren B, Sjögren HO. Nitric-oxide-dependent systemic immunosuppression in animals with progressively growing malignant gliomas. Cell Immunol. 2000;200:116–27.

    Article  CAS  PubMed  Google Scholar 

  65. Badn W, Visse E, Darabi A, Smith KE, Salford LG, Siesjö P. Postimmunization with IFN-gamma-secreting glioma cells combined with the inducible nitric oxide synthase inhibitor mercaptoethylguanidine prolongs survival of rats with intracerebral tumors. J Immunol. 2007;179:4231–8.

    Article  CAS  PubMed  Google Scholar 

  66. Badn W, Kalliomäki S, Widegren B, Sjögren HO. Low-dose combretastatin A4 phosphate enhances the immune response of tumor hosts to experimental colon carcinoma. Clin Cancer Res Off J Am Assoc Cancer Res. 2006;12:4714–9.

    Article  CAS  Google Scholar 

  67. Eberstål S, Badn W, Fritzell S, Esbjörnsson M, Darabi A, Visse E, Siesjö P. Inhibition of cyclooxygenase-2 enhances immunotherapy against experimental brain tumors. Cancer Immunol Immunother. 2012;61:1191–9.

    Article  PubMed  Google Scholar 

  68. Grimm EA, Sikora AG, Ekmekcioglu S. Molecular pathways: inflammation-associated nitric-oxide production as a cancer-supporting redox mechanism and a potential therapeutic target. Clin Cancer Res Off J Am Assoc Cancer Res. 2013;19:5557–63.

    Article  CAS  Google Scholar 

  69. Jayaraman P, Parikh F, Lopez-Rivera E, Hailemichael Y, Clark A, Ma G, Cannan D, Ramacher M, Kato M, Overwijk WW, Chen SH, Umansky VY, Sikora AG. Tumor-expressed inducible nitric oxide synthase controls induction of functional myeloid-derived suppressor cells through modulation of vascular endothelial growth factor release. J Immunol. 2012;188:5365–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Jia W, Jackson-Cook C, Graf MR. Tumor-infiltrating, myeloid-derived suppressor cells inhibit T cell activity by nitric oxide production in an intracranial rat glioma+ vaccination model. J Neuroimmunol. 2010;223:20–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Samy AS, Igwe OJ. Regulation of IL-1b-induced cyclooxygenase-2 expression by interactions of Ab peptide, apolipoprotein E and nitric oxide in human neuroglioma. J Mol Neurosci. 2012;47:533–45.

    Article  CAS  PubMed  Google Scholar 

  72. Obermajer N, Wong JL, Edwards RP, Odunsi K, Moysich K, Kalinski P. PGE(2)-driven induction and maintenance of cancer-associated myeloid-derived suppressor cells. Immunolo Invest. 2012;41:635–57.

    Article  CAS  Google Scholar 

  73. Veltman JD, Lambers ME, van Nimwegen M, Hendriks RW, Hoogsteden HC, Aerts JG, Hegmans JP. COX-2 inhibition improves immunotherapy and is associated with decreased numbers of myeloid-derived suppressor cells in mesothelioma. Celecoxib influences MDSC function. BMC Cancer. 2010;10:464.

    Article  PubMed Central  PubMed  Google Scholar 

  74. Kusmartsev S, Su Z, Heiser A, Dannull J, Eruslanov E, Kübler H, Yancey D, Dahm P, Vieweg J. Reversal of myeloid cell-mediated immunosuppression in patients with metastatic renal cell carcinoma. Clin Cancer Res Off J Am Assoc Cancer Res. 2008;14:8270–8.

    Article  CAS  Google Scholar 

  75. Millet A, Bettaieb A, Renaud F, Prevotat L, Hammann A, Solary E, Mignotte B, Jeannin JF. Influence of the nitric oxide donor glyceryl trinitrate on apoptotic pathways in human colon cancer cells. Gastroenterology. 2002;123:235–46.

    Article  CAS  PubMed  Google Scholar 

  76. Williams JL, Borgo S, Hasan I, Castillo E, Traganos F, Rigas B. Nitric oxide-releasing nonsteroidal anti-inflammatory drugs (NSAIDs) alter the kinetics of human colon cancer cell lines more effectively than traditional NSAIDs: implications for colon cancer chemoprevention. Cancer Res. 2001;61:3285–9.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks Edward Visse for illustrations in Figs. 10.1 and 10.2.

No Conflict Statement

No potential conflicts of interest were disclosed

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Siesjö .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Siesjö, P. (2015). Regulation of Anti-Tumor Immune Responses. In: Bonavida, B. (eds) Nitric Oxide and Cancer: Pathogenesis and Therapy. Springer, Cham. https://doi.org/10.1007/978-3-319-13611-0_10

Download citation

Publish with us

Policies and ethics