Skip to main content

Mild Encephalitis Theory of Psychiatric Disorders

  • Chapter
Immunology and Psychiatry

Part of the book series: Current Topics in Neurotoxicity ((Current Topics Neurotoxicity,volume 8))

  • 1379 Accesses

Abstract

Introduction: The mild encephalitis (ME) hypothesis addresses a separate category of clinically meaningful CNS inflammation of a lower degree compared to classical encephalitis (CE), patients presenting with predominant psychiatric symptoms. Inflammation is a dimensional entity over time and space within various bodily compartments or tissues, triggered by infections, trauma, toxicity, and immune challenges. Low level grade brain inflammation (LLNI) should be causally involved in ME. Main candidates of ME were severe psychiatric disorders of affective and schizophrenic type, including prodromal stages, acute exacerbations. Short-lived CE in small localized sites within the brain would match with ME. Clinical assessment of ME depends strongly upon the methods used to identify neuroinflammation. The international consensus that both categories, of encephalitis and of encephalopathy, can associate with neuroinflammation, demonstrates the present theoretical and practical dilemma.

Autoimmune Encephalitis (AE) and Limbic Encephalitis (LE): New insights into CE and LE pathophysiology emerged from the identification of neuronal autoantibodies, e.g. NMDAR antibodies. More and more neuronal autoantibodies become detected. AE cases present varying and various clinical syndromes including epilepsies. In some cases of AE defined autoantibodies maybe missing in the blood or CSF. Overall the threshold for the clinical diagnosis of LE, CE, and AE was lowered through improved laboratory methods. This recent development matches predictions of the ME hypothesis that with improved diagnostic methods a better clinical assessment of LLNI and ME will be possible and the definition of borders between CE and hypothetical ME may change.

Utility and Limitations of Clinical Categorization: Behind the preferred strict categorization in the clinical field stands the important goal to obtain reliable guidelines for therapeutic management, which implies that dimensional aspects of a disease may be neglected. Present brain imaging is rather insensitive to detect LLNI, CSF investigation is the most sensitive approach, but protein concentrations in CSF are much lower than in the blood and the involvement of complicated CSF flow patterns makes interpretation difficult. Experimental models clearly support the view that grading of neuroinflammation into severity levels is needed. In addition topology is relevant for defining cause–response relationships. Definition of neuroinflammation differs between various research fields and clinical fields. Nevertheless with improved diagnostic approaches to ME, especially by CSF diagnostics, a clinical diagnosis of LLNI is becoming feasible. Idealized types of CE and ME in a dimensional scheme (severity by time) are presented.

Some Historical Remarks on Etiology Research in Psychiatric Disorders: The initial hypothesis around 1857 that syphilis might represent an important risk factor for general paresis (GP) was accepted only about 70 years later. Very important was the progress in laboratory diagnosis and introduction of lumbar puncture (with CSF analysis). Nevertheless up to now we cannot exactly explain why, after often long latency of years, GP may develop in a subgroup of the infected. Many infections are characterized by low overall pathogenicity (number of diseased per number of infected).

Multiple Interacting Systems and Factors: Severe psychiatric disorders are complex diseases with many contributing factors to be considered: certainly genes, age (of onset), timing, infection, autoimmunity, stress, and possibly chance. The overall scenario is similar to systemic autoimmune disorders a considerable subgroup of such patients suffering from comorbid psychiatric symptoms including severe psychosis. Respective pathomechanisms are only partially known yet. CSF analysis is the most sensitive diagnostic approach to neuroinflammatory disorders. With modern methods in about 70 % of cases with affective or schizophrenic spectrum (including bipolar) disorders various CSF abnormalities were found, demonstrating some LLNI process or immune activation in the intrathecal spaces, but also crosstalk between the periphery and the brain.

Brain Barriers and Systemic Crosstalk: Systemic inflammation can directly influence brain functions and elicit defined symptoms like sickness behavior. Neuroinflammation is primarily likely to change brain functions. Insights from experimental neuroimmunology show that chronic neuroinflammation develops when acute inflammation is not actively resolved. The choroid plexus (CP) represents an interface between blood and CSF spaces; immune cells are recruited and educated at the CP. The blood–brain barrier (BBB) and the blood–CSF barrier (BCSFB) are to be differentiated. CSF flow is pulsating forth and back with a flow distance up to 10 cm per pulse on certain sites. CSF cells are distributed by CSF flow and can follow the CSF outflow pathways (PCOP) through cribriform plate and along brain nerves and spinal nerves. Crosstalk between CNS immunity and systemic immunity is taking place at these barriers and the PCOP.

Outlook: Subgroups of severe psychiatric disorders present some neuroinflammatory process, which may at least contribute to, if not causally underlie, a variety of severe psychiatric disorders. LLNI pathogenesis remains incompletely understood. ME theory fits with epidemiological and clinical aspects, including the proven risk increase during lifetime by infections and autoimmune disorders, also head trauma. It remains a challenge to clinically assess and differentiate LLNI processes by neuroimaging, CSF investigation and new methods. Psychiatric research should focus on etiopathogenetic research including the ME theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson G, Berk M, Dodd S, Bechter K, Altamura AC, Dell’osso B, et al. Immuno-inflammatory oxidative and nitrosative stress and neuroprogressive pathways in the etiology, course and treatment of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2013;42:1–4.

    CAS  PubMed  Google Scholar 

  • Baruch K, Ron-Harel N, Gal H, Deczkowska A, Shifrut E, Ndifon W, et al. CNs-specific immunity at the choroid plexus shifts toward destructive Th2 inflammation in brain aging. Proc Natl Acad Sci U S A. 2013;110(6):2264–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bechmann I, Galea I, Perry VH. What is the blood–brain barrier (not)? Trends Immunol. 2007;28(1):5–11.

    CAS  PubMed  Google Scholar 

  • Bechter K. Research strategies in “slow” infections in psychiatry. Hist Psychiatry. 1995;6:503–11.

    CAS  PubMed  Google Scholar 

  • Bechter K. Mild encephalitis underlying psychiatric disorder – a reconsideration and hypothesis exemplified on Borna disease. Neurol Psychiatry Brain Res. 2001;9:55–70.

    Google Scholar 

  • Bechter K. Basic symptoms in symptomatic schizophrenia. Neurol Psychiatry Brain Res. 2002;10:35–40.

    Google Scholar 

  • Bechter K. Neuroimaging in the diagnosis of encephalitis as a cause of psychoses. Neurol Croat. 2005;54 Suppl 2:59–63.

    Google Scholar 

  • Bechter K. Cerebrospinal fluid may mediate pathogenic effects on nerves via efflux: a hypothesis from unexpected improved pain syndromes with cerebrospinal fluid filtration. Neurol Psychiatry Brain Res. 2007;14:37–42.

    Google Scholar 

  • Bechter K. The peripheral cerebrospinal fluid outflow pathway - physiology and pathophysiology of CSF recirculation: a review and hypothesis. Neurol Psychiatry Brain Res. 2011;17(3):51–66.

    Google Scholar 

  • Bechter K. Diagnosis of infectious or inflammatory psychosyndromes. Open Neurol J. 2012;6(Suppl 1-M6):113–8.

    PubMed Central  PubMed  Google Scholar 

  • Bechter K. Updating the mild encephalitis hypothesis of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2013;42:71–91.

    CAS  PubMed  Google Scholar 

  • Bechter K, Brown D. Neuroinflammation in psychiatric disorders – evidence form research and clinic. Neurol Psychiatry Brain Res. 2013;19:139–40.

    Google Scholar 

  • Bechter K, Bauer M, Estler HC, Herzog S, Schüttler R, Rott R. Erweiterte Kernspintomographische Untersuchungen bei Borna-disease-Virus seropositiven psychiatrischen Patienten und Kontrollen. Nervenarzt. 1994;65:169–74.

    CAS  PubMed  Google Scholar 

  • Bechter K, Herzog S, Behr W, Schüttler R. Investigations of cerebrospinal fluid in Borna disease virus seropositive psychiatric patients. Eur Psychiatry. 1995;10(5):250–8.

    CAS  PubMed  Google Scholar 

  • Bechter K, Herzog S, Schreiner V, Wollinsky KH, Schüttler R. Cerebrospinal fluid filtration in a case of schizophrenia related to ‘subclinical’ Borna disease virus encephalitis. In: Müller N, editor. Psychiatry, psychoneuroimmunology and viruses. Key topics in brain research. Wien: Springer; 1999. p. 19–35.

    Google Scholar 

  • Bechter K, Herzog S, Schreiner V, Brinkmeier H, Aulkemeyer P, Weber F, Schüttler R. Borna disease virus-related therapy-resistant depression improved after cerebrospinal fluid filtration. J Psychiatr Res. 2000;34:393–6.

    CAS  PubMed  Google Scholar 

  • Bechter K, Wittek R, Seitz K, Antoniadis G. Personality disorders improved after arachnoid cyst neurosurgery, then re-diagnosed as ‘minor’ organic personality disorders. Psychiatry Res. 2010a;184:196–200.

    PubMed  Google Scholar 

  • Bechter K, Reiber H, Herzog S, Fuchs D, Tumani H, Maxeiner H-G. Cerebrospinal fluid analysis in affective and schizophrenic spectrum disorders: identification of subgroups with immune responses and blood–CSF barrier dysfunction. J Psychiatr Res. 2010b;44:321–30.

    CAS  PubMed  Google Scholar 

  • Benros ME, Mortensen PB, Eaton WW. Autoimmune diseases and infections as risk factors for schizophrenia. Ann N Y Acad Sci. 2012;1262:65–6.

    Google Scholar 

  • Benros ME, Waltoft BL, Nordentoft M, Ostergaard SD, Eaton WW, Krogh J, Mortensen PB. Autoimmune diseases and severe infections as risk factors for mood disorders: a nationwide study. JAMA Psychiatry. 2013;70(8):812–20.

    PubMed  Google Scholar 

  • Benros ME, Eaton WW, Mortensen PB. The epidemiologic evidence linking autoimmune diseases and psychosis. Biol Psychiatry. 2014;75:300–6.

    PubMed  Google Scholar 

  • Bentivoglio M, Mariotti R, Bertini G. Neuroinflammation and brain infections: historical context and current perspectives. Brain Res Rev. 2011;66:152–73.

    CAS  PubMed  Google Scholar 

  • Benveniste H, Budassi M, Smith SD, Yu M, Lee H, Nedergaard M, Vaska P. Brain-wide glymphatic waste drainage characterized by PET-MRI. Neurol Psychiatry Brain Res. 2014;20:4.

    Google Scholar 

  • Berer K, Mues M, Koutrolos M, Rasbi ZA, Boziki M, Johner C, et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature. 2011;479(7374):538–41.

    CAS  PubMed  Google Scholar 

  • Berer K, Imaoka A, Umesaki Y, Johner C, Wekerle H, Krishnamoorthy G. Commensal microbiota triggers spontaneous autoimmune encephalitis. Neurol Psychiatry Brain Res. 2014;20:5.

    Google Scholar 

  • Brietzke E, Sterzt L, Fernandes BS, Kauer-Sant’Anna M, Mascarenhas M, Vargas AE. Comparison of cytokine levels in depressed, manic and euthymic patients with bipolar disorder. J Affect Disord. 2009;116:214–71.

    CAS  PubMed  Google Scholar 

  • Brown AS. Exposure to prenatal infection and risk of schizophrenia. Front Psychiatry. 2011;2:63.

    PubMed Central  PubMed  Google Scholar 

  • Brown DA, Sawchenko PE. Time course and distribution of inflammatory and neurodegenerative events suggest structural bases for the pathogenesis of experimental autoimmune encephalomyelitis. J Comp Neurol. 2007;502(2):236–60.

    PubMed  Google Scholar 

  • Buchsbaum MS, Rieder R. Biologic heterogeneity and psychiatric research. Arch Gen Psychiatry. 1979;xxxvi:1163–9.

    Google Scholar 

  • Carare RO, Hawkes CA, Well RO. Afferent and efferent immunological pathways of the brain. Anatomy, function and failure. Brain Behav Immun. 2014;36:9–14.

    CAS  PubMed  Google Scholar 

  • Carter CJ. Schizophrenia susceptibility genes directly implicated in the life cycles of pathogens: cytomegalovirus, influenza, herpes simplex, rubella, and Toxoplasma gondii. Schizophr Bull. 2009;35(6):1163–82.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cherner M, Cysique L, Heaton RK, Marcotte TD, Ellis RJ, Masliah E, et al. Neuropathologic confirmation of definitional criteria for human immunodeficiency virus-associated neurocognitive disorders. J Neurovirol. 2007;13:23–8.

    PubMed  Google Scholar 

  • Coutinho E, Harrison P, Vincent A. Do neuronal autoantibodies cause psychosis? A neuroimmunological perspective. Biol Psychiatry. 2014;75:269–75.

    CAS  PubMed  Google Scholar 

  • D’Ippolito S, Meroni PL, Koike T, Veglia M, Scambia G, Di Simone N. Obstetric antiphospholipid syndrome: a recent classification for an old defined disorder. Autoimmun Rev. 2014;13(9):901–8.

    PubMed  Google Scholar 

  • Dalmau J, Gleichman AJ, Hughes EG, Rossi JE, Peng X, Lai M, et al. Anti-NMDA-receptor encephalitis: case series and analysis of the effects of antibodies. Lancet Neurol. 2008;7(12):1091–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dalmau J, Lancaster E, Martinez-Hernandez E, Rosenfeld MR, Balice-Gordon R. Clinical experience and laboratory investigation in patients with anti-NMDAR encephalitis. Lancet Neurol. 2011;10:63–74.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dantzer R. Depression and inflammation: an intricate relationship. Biol Psychiatry. 2012;71(1):4–5.

    PubMed  Google Scholar 

  • Deakin J, Lennox BR, Zandi MS. Antibodies to the N-methyl-d-aspartate receptor and other synaptic proteins in psychosis. Biol Psychiatry. 2014;75:284–91.

    CAS  PubMed  Google Scholar 

  • Diamond B, Volpe BT. A model for lupus brain disease. Immunol Rev. 2012;248(1):56–67.

    PubMed Central  PubMed  Google Scholar 

  • Drexhage RC, van der Heul-Nieuwenhuijsen L, Padmos RC, van Beveren N, Cohen D, Versnel MA, et al. Inflammatory gene expression in monocytes of patients with schizophrenia: overlap and difference with bipolar disorder. A study in naturalistically treated patients. Int J Neuropsychopharmacol. 2010;13(10):1369–81.

    CAS  PubMed  Google Scholar 

  • Engelhardt B, Ransohoff RM. Capture, crawl, cross: the T cell code to breach the blood–brain barriers. Trends Immunol. 2012;33(12):579–89.

    CAS  PubMed  Google Scholar 

  • Frisch C, Malter MP, Elger CE, Helmstaedter C. Neuropsychological course of voltage-gated potassium channel and glutamic acid decarboxylase antibody related limbic encephalitis. Eur J Neurol. 2013;20(9):1297–304.

    CAS  PubMed  Google Scholar 

  • Fuxe K, Borroto-Escuela DO, Tarakanov A, Fernandez WR, Manger P, Rivera A, et al. Understanding the balance and integration of volume and synaptic transmission. Relevance for psychiatry. Neurol Psychiatry Brain Res. 2013;19:141–58.

    Google Scholar 

  • Gable MS, Sheriff H, Dalmau J, Tilley DH, Glaser CA. The frequency of autoimmune N-methyl-d-aspartate receptor encephalitis surpasses that of individual viral etiologies in young individuals enrolled in the California encephalitis project. Clin Infect Dis. 2012;54(7):899–904.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gajdusek DC. Kuru in New Guinea and the origin of the NINDB study of slow, latent and temperate virus infections of the nervous system of man. In: Gajdusek DC, Gibbs Jr CJ, Alpers M, editors. Slow, latent and temperate virus infections. NINDB2. Bethesda: NINDB; 1965. p. 3–12.

    Google Scholar 

  • Gibney SM, Drexhage HA. Evidence for a dysregulated immune system in the etiology of psychiatric disorders. J Neuroimmune Pharmacol. 2013;8(4):900–20.

    PubMed  Google Scholar 

  • Glaser CA, Honarmand S, Anderson LJ, Schnurr DP, Forghani B, Cossen CK, et al. Beyond viruses: clinical profiles and etiologies associated with encephalitis. Clin Infect Dis. 2006; 43(12):1565–77.

    CAS  PubMed  Google Scholar 

  • Gulbins E, Palmada M, Reichel M, Lüth A, Böhmer C, Amato D, et al. Acid sphingomyelinase-ceramide system mediates effects of antidepressant drugs. Nat Med. 2013;19:934–8.

    CAS  PubMed  Google Scholar 

  • Gupta S, Soellinger M, Boesiger P, Paulikakos D, Kurtcuoglu V. Three-dimensional computational modeling of subjects specific cerebrospinal fluid flow in the subarachnoid space. J Biomech Eng. 2009;131:021010.

    PubMed  Google Scholar 

  • Gupta S, Soellinger M, Grzybowski DM, Boesiger P, Biddiscombe J, Paulikakos D, et al. Cerebrospinal fluid dynamics in the human cranial subarachnoid space. An overlooked mediator of cerebral disease. I. Computational model. J R Soc Interface. 2010;7:1195–204.

    PubMed Central  PubMed  Google Scholar 

  • Häfner H. Epidemiology of schizophrenia. The disease model of schizophrenia in the light of current epidemiological knowledge. Eur Psychiatry. 1995;10(5):217–27.

    PubMed  Google Scholar 

  • Hayes LN, Severance EG, Leek JT, Gressitt KL, Rohleder C, Coughlin JM, et al. Inflammatory molecular signature associated with infectious agents in psychosis. Schizophr Bull. 2014; 40(5):963–72.

    Google Scholar 

  • Herberth M, Rahmoune H, Schwarz E, Koethe D, Harris LW, Kranaster L, et al. Identification of a molecular profile associated with immune status in first-onset schizophrenia patients. Clin Schizophr Relat Psychoses. 2014;7(4):207–15.

    PubMed  Google Scholar 

  • Herden C, Herzog S, Richt JA, Nesseler A, Christ M, Failing K, Frese K. Distribution of Borna disease virus in the brain of rats infected with an obesity-inducing virus strain. Brain Pathol. 2000;10(1):39–48.

    CAS  PubMed  Google Scholar 

  • Hertz L, Song D, Li B, Yan E, Peng L. Importance of inflammatory molecules, but not necessarily of inflammation, in the pathophysiology of bipolar disorder and in the mechanisms of action of anti-bipolar drugs. Neurol Psychiatry Brain Res. 2013;19:174–9.

    Google Scholar 

  • Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med. 2012;4(147):147ra111.

    PubMed Central  PubMed  Google Scholar 

  • Johnson RT. Viral infections of the nervous system. New York: Raven; 1982.

    Google Scholar 

  • Juckel G, Manitz MP, Brüne M, Friebe A, Heneka MT, Wolf RJ. Microglial activation in a neuroinflammational animal model of schizophrenia – a pilot study. Schizophr Res. 2011; 131:96–100.

    PubMed  Google Scholar 

  • Kaminski M, Bechmann I, Pohland M, Kiwit J, Nitsch R, Glumm J. Migration of monocytes after intracerebral injection at entorhinal cortex lesion site. J Leukoc Biol. 2012;92(1):31–9.

    CAS  PubMed  Google Scholar 

  • Kettenmann H, Kirchhoff F, Verkhratsky A. Microglia: new roles for the synaptic stripper. Neuron. 2013;77(1):10–18.

    CAS  PubMed  Google Scholar 

  • Kipnis J, Gadani S, Derecke NC. Pro-cognitive properties of T cells. Nat Rev Immunol. 2012;12(9):663–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kramer K, Schaudien D, Eisel ULM, Herzog S, Richt JA, Baumgärtner W, et al. TNF-overexpression in Borna disease virus-infected mouse brains triggers inflammatory reaction and epileptic seizures. PLoS One. 2012;7(7):e41476.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kuehne LK, Reiber H, Bechter K, Hagber L, Fuchs D. Cerebrospinal fluid neopterin is brain-derived and not associated with blood–CSF barrier dysfunction in non-inflammatory affective and schizophrenic spectrum disorders. J Psychiatr Res. 2013;47:1417–22.

    PubMed  Google Scholar 

  • Kumarasinghe N, Rasser PE, Mendis J, Bergman J, Knechtel L, Oxley S, Perera A, et al. Age effects on cerebral grey matter and their associations with psychopathology, cognition and treatment response in previously untreated schizophrenia patients. Neurol Psychiatry Brain Res. 2014;20(2):29–36.

    Google Scholar 

  • Kurstak E. Introduction. In: Kurstag E, editor. Psychiatry and biological factors. New York: Plenum; 1991. p. 1–5.

    Google Scholar 

  • Kurtcuoglu V. Pulsatile cerebrospinal fluid flow in the cranial subarachnoid space. Neurol Psychiatry Brain Res. 2012;18:66–7.

    Google Scholar 

  • Lancaster E, Lai M, Peng X, Huges E, Constantinescu R, Raizer J, et al. Antibodies to the GABAB receptor in limbic encephalitis with seizures: case series and characterization of the antigen. Lancet Neurol. 2010;9:67–76.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lancaster E, Martinez-Hernandez E, Dalmau J. Encephalitis and antibodies to synaptic and neuronal cell surface proteins. Neurology. 2011;77:179–89.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lucchinetti CF, Popescu BF, Bunyan RF, Moll NM, Roemer SF, Lassmann H, et al. Inflammatory cortical demyelination in early multiple sclerosis. N Engl J Med. 2011;365(23):2188–97.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Maggio N, Shavit-Stein E, Dori A, Blatt I, Chapman J. Prolonged systemic inflammation persistently modifies synaptic plasticity in the hippocampus: modulation by the stress hormones. Front Mol Neurosci. 2013;6:46.

    PubMed Central  PubMed  Google Scholar 

  • Marshall B. Helicobacter connections. ChemMedChem. 2006;1(8):783–802.

    CAS  PubMed  Google Scholar 

  • Mattei D, Djodari-Irani A, Hadar R, Pelz A, Fernandes de Cossio L, Goetz T, et al. Minocycline rescues decrease in neurogenesis, increase in microglia cytokines and deficits in sensorimotor gating in an animal model of schizophrenia. Brain Behav Immun. 2014;38:175–84.

    CAS  PubMed  Google Scholar 

  • Maxeiner H-G, Rojewski MT, Schmitt A, Tumani H, Bechter K, Schmitt M. Flow cytometric analysis of T cell subsets in paired samples of cerebrospinal fluid and peripheral blood from patients with neurological and psychiatric disorder. Brain Behav Immun. 2009;23:134–42.

    CAS  PubMed  Google Scholar 

  • Maxeiner HG, Schneider M, Kurfiss S-T, Brettschneider J, Tumani H, Bechter K. Cerebrospinal fluid and serum cytokine profiling to detect immune control of infectious and inflammatory neurological and psychiatric diseases. Cytokine 2014;69:62–67.

    CAS  PubMed  Google Scholar 

  • Meyer U. Developmental neuroinflammation and schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2013;42:20–34.

    CAS  PubMed  Google Scholar 

  • Meyer-Lindenberg A. From maps to mechanisms through neuroimaging of schizophrenia. Nature. 2010;468:194–202.

    CAS  PubMed  Google Scholar 

  • Mosca M, Neri R, Bencivelli W, Tavoni A, Bombardieri S. Undifferentiated connective tissue disease: analysis of 83 patients with a minimum followup of 5 years. J Rheumatol. 2002;29(11):2345–9.

    PubMed  Google Scholar 

  • Müller M, Bechter K. The mild encephalitis concept for psychiatric disorders revisited in the light of current psychoneuroimmunological findings. Neurol Psychiatry Brain Res. 2013;19:87–101.

    Google Scholar 

  • Myint AM, Kim YK. Network beyond IDO in psychiatric disorders: revisiting neurodegeneration hypothesis. Prog Neuropsychopharmacol Biol Psychiatry. 2014;48:304–13.

    CAS  PubMed  Google Scholar 

  • Najjar S, Pearlman D, Devinsky O, Najjar A, Nadkarni S, Butler T, et al. Neuropsychiatric autoimmune encephalitis without VGKC-Complex, NMDAR, and GAD autoantibodies: Case report and Literature Review. Cogn Behav Neurol. 2013;26(1):36–49.

    PubMed  Google Scholar 

  • Nathan C. Antibiotics at the crossroads. Nature. 2004;431(7011):899–902.

    CAS  PubMed  Google Scholar 

  • Okamoto T, Sato Y, Yamazaki T, Hayashi A. Clinically mild encephalitis/encephalopathy with a reversible splenial lesion associated with febrile urinary tract infection. Eur J Pediatr. 2014;173:533–6.

    PubMed Central  PubMed  Google Scholar 

  • Osborn AG, Salzman KL, Barkovich AJ. Diagnostic imaging: brain. Philadelphia: Lippincott Williams & Wilkins; 2010.

    Google Scholar 

  • Peery HE, Day GS, Dunn S, Fritzler MJ, Prüss H, De Souza C, et al. Anti-NMDA receptor encephalitis. The disorder, the diagnosis and the immunobiology. Autoimmun Rev. 2012;11:863–72.

    CAS  PubMed  Google Scholar 

  • Polimeni M, Prato M. Host matrix metalloproteinases in cerebral malaria: new kids on the block against blood–brain barrier integrity? Fluids Barriers CNS. 2014;11:1.

    PubMed Central  PubMed  Google Scholar 

  • Prüss H. Comment: infection antedating autoimmunity—shared mechanisms in the brain? Neurology. 2013;81(18):1639.

    PubMed  Google Scholar 

  • Ransohoff RM. Immunology: in the beginning. Nature. 2009;462(7269):41–2.

    CAS  PubMed  Google Scholar 

  • Rector JL, Dowd JB, Loerbroks A, Burns VE, Moss P, Jarczok MN, et al. Consistent associations between measures of psychological stress and CMV antibody levels in a large occupational sample. Brain Behav Immun. 2014;38:133–41.

    PubMed  Google Scholar 

  • Reiber H. Flow rate of cerebrospinal fluid (CSF)—a concept common to normal blood–CSF barrier function and to dysfunction in neurological diseases. J Neurol Sci. 1994;122(2):189–203.

    CAS  PubMed  Google Scholar 

  • Reiber H, Peter JB. Cerebrospinal fluid analysis: disease-related data patterns and evaluation programs. J Neurol Sci. 2001;184(2):101–22.

    CAS  PubMed  Google Scholar 

  • Richt JA, Pfeuffer I, Christ M, Frese K, Bechter K, Herzog S. Borna disease virus infection in animals and humans. Emerg Infect Dis. 1997;3(3):343–52 (Review).

    PubMed Central  CAS  PubMed  Google Scholar 

  • Robbins PD, Morelli AE. Regulation of immune responses by extracellular vesicles. Nat Rev Immunol. 2014;14:195–208.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Roos KL. Encephalitis. Neurol Clin. 1999;17(4):813–33.

    CAS  PubMed  Google Scholar 

  • Rossi S, Studer V, Motta C, Germani G, Macchiarulo G, Buttari F, et al. Cerebrospinal fluid detection of interleukin-1 beta in phase of remission predicts disease progression in multiple sclerosis. J Neuroinflammation. 2014;11:32.

    PubMed Central  PubMed  Google Scholar 

  • Sánchez-Blázquez P, Rodriguez-Munõz M, Herrero-Labrador R, Burguenño J, Zamanillo D, Garzón J. The calcium-sensitive Sigma-1 receptor prevents cannabinoids from provoking glutamate NMDA receptor hypofunction: implications in antinociception and psychotic diseases. Int J Neuropsychopharmacol. 2014;31:1–13.

    Google Scholar 

  • Schielke A, Rosner BM, Stark K. Epidemiology of campylobacteriosis in Germany – insights from 10 years of surveillance. BMC Infect Dis. 2014;14:30.

    PubMed Central  PubMed  Google Scholar 

  • Schmitt M, Neubauer A, Greiner J, Xu X, Barth TF, Bechter K. Spreading of acute myeloid leukemia cells by trafficking along the peripheral outflow pathway of cerebrospinal fluid. Anticancer Res. 2011;31(6):2343–5.

    PubMed  Google Scholar 

  • Schwartz M, Baruch K. The resolution of neuroinflammation in neurodegeneration: leukocyte recruitment via the choroid plexus. EMBO J. 2014;33(7):7–22.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Seyfert S, Faulstich A. Is the blood–CSF barrier altered in disease? Acta Neurol Scand. 2003;108(4):252–6.

    CAS  PubMed  Google Scholar 

  • Seyfert S, Faulstich A, Marx P. What determines the CSF concentrations of albumin and plasma-derived IgG? J Neurol Sci. 2004;219(1–2):31–3.

    CAS  PubMed  Google Scholar 

  • Seyfert S, Quill S, Faulstich A. Variation of barrier permeability for albumin and immunoglobulin G influx into cerebrospinal fluid. Clin Chem Lab Med. 2009;47(8):955–8.

    CAS  PubMed  Google Scholar 

  • Shoenfeld Y, Rose NR. Infection and autoimmunity. Amsterdam: Elsevier; 2004.

    Google Scholar 

  • Sörensen HJ, Nielsen PR, Pedersen CB, Benros ME, Nordentoft M, Mortensen PB. Population impact of familial and environmental risk factors for schizophrenia: a nationwide study. Schizophr Res. 2014;153(1–3):214–9.

    PubMed  Google Scholar 

  • Stangel M, Fredrikson S, Meinl E, Petzold A, Stüve O, Tumani H. The utility of cerebrospinal fluid analysis in patients with multiple sclerosis. Nat Rev Neurol. 2013;9:267–76.

    CAS  PubMed  Google Scholar 

  • Steiner J, Walter M, Glanz W, Sarnyai Z, Bernstein HG, Vielhaber S, et al. Increased prevalence of diverse N-methyl-d-aspartate glutamate receptor antibodies in patients with an initial diagnosis of schizophrenia: specific relevance of IgG NR1a antibodies for distinction from N-methyl-d-aspartate glutamate receptor encephalitis. JAMA Psychiatry. 2013;70(3):271–8.

    PubMed  Google Scholar 

  • Thomson CA, McColl A, Cavanagh J, Graham GJ. Peripheral inflammation is associated with remote global gene expression changes in the brain. J Neuroinflammation. 2014;11(1):73.

    PubMed Central  PubMed  Google Scholar 

  • Venkatesan A, Tunkel AR, Bloch KC, Lauring AS, Sejvar J, Bitnun A, Stahl J-P, et al. Case definitions, diagnostic algorithms, and priorities in encephalitis: Consensus statement of the international encephalitis consortium. Clinical Infectious Diseases. 2013;57(8):1114–28.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Walsh JG, Muruve DA, Power C. Inflammasomes in the CNS. Nat Rev Neurosci. 2014;15:84–97.

    CAS  PubMed  Google Scholar 

  • Wang Y, Kasper LH. The role of microbiome in central nervous system disorders. Brain Behav Immun. 2014;38C:1–12.

    Google Scholar 

  • Whittle S, Lichter R, Dennison M, Yijayakumar N, Schwartz O, Byrne ML, et al. Structural brain development and depression onset during adolescence: a prospective longitudinal study. Am J Psychiatry. 2014;171(5):564–71.

    PubMed  Google Scholar 

  • Wildemann B, Oschmann P, Reiber H. Laboratory diagnosis in neurology. Stuttgart: Thieme; 2010.

    Google Scholar 

  • Wohleb ES, Godbout JP. Basic aspects of the immunology of neuroinflammation. In: Halaris A, Leonard BE, editors. Inflammation in psychiatry. Mod trends pharmacopsychiatry, vol. 28. Basel: Karger; 2013. p. 1–19.

    Google Scholar 

  • Wolburg H, Paulus W. Choroid plexus: biology and pathology. Acta Neuropathol. 2010;119(1):75–88.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Bechter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bechter, K. (2015). Mild Encephalitis Theory of Psychiatric Disorders. In: Müller, N., Myint, AM., Schwarz, M. (eds) Immunology and Psychiatry. Current Topics in Neurotoxicity, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-319-13602-8_5

Download citation

Publish with us

Policies and ethics