Skip to main content

Protein-Based Nanoparticles

  • Chapter
  • First Online:
Food Nanoscience and Nanotechnology

Abstract

Considerable research has been done recently in the field of protein-based nanoparticles as a system for bioactive compounds delivery. These carriers have considerable stability during storage as well as in vivo. Different proteins have been used for this purpose which include water-soluble and insoluble molecules with diverse encapsulating capacities. The preparation methods are also diverse and include among others emulsification, desolvation, coacervation, nanoprecipitation, liquid–liquid dispersion, and electrohydrodinamic atomization. This review presents different contributions to the field of protein nanoparticles dealing with the applications of different methods to diverse proteins and bioactive compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arangoa MA, Campanero MA, Renedo MJ, Ponchel G, Irache JM (2001) Gliadin nanoparticles as carriers for the oral administration of lipophilic drugs. Relationship between bioadhesion and pharmacokinetics. Pharm Res 18:1521–1527

    Article  CAS  Google Scholar 

  • Arroyo-Maya, IJ, Rodiles-López JO, Cornejo-Mazón M, Gutiérrez-López GF, Hernández-Arana A, Toledo-Núñez C, Barbosa-Cánovas GV, Flores-Flores JO, Hernández-Sánchez H (2012) Effect of different treatments on the ability of α-lactalbumin to form nanoparticles. J Dairy Sci 95:6204–6214

    Article  CAS  Google Scholar 

  • Azarmi S, Huang Y, Chen H, McQuarrie S, Abrams D, Roa W, Finlay WH, Miller GG, Löbenberg R (2006) Optimization of a two-step desolvation method for preparing gelatin nanoparticles and cell uptake studies in 143B osteosarcoma cancer cells. J Pharm Pharm Sci 9:124–132

    CAS  Google Scholar 

  • Bean SR, Lookhart GL (2000) Electrophoresis of cereal storage proteins. J Chromatogr A 881:23–36

    Article  CAS  Google Scholar 

  • Carpineti L, Martinez MJ, Pilosof AMR, Pérez OR (2014) β-Lactoglobulin-carboxymethylcellulose core-shell microparticles: construction, characterization and isolation. J Food Eng 131: 65–74

    Article  CAS  Google Scholar 

  • Chen L, Remondetto GE, Subirade M (2006) Food protein-based materials as nutraceutical delivery systems. Trends Food Sci Technol 17:272–283

    Article  CAS  Google Scholar 

  • Coester CJ, Langer K, Von Briesen H, Kreuter J (2000) Gelatin nanoparticles by two step desolvation: a new preparation method, surface modifications and cell uptake. J Microencapsul 17:187–193

    Article  CAS  Google Scholar 

  • De R, Kundu P, Swarnakar S, Ramamurthy T, Chowdhury A, Nair GB, Mukhopadhyay AK (2009) Antimicrobial activity of curcumin against Helicobacter pylori isolates from India and during infections in mice. Antimicrob Agents Chemother 53:1592–1597

    Article  CAS  Google Scholar 

  • Desai MP, Labhasetwar V, Amidon GL, Levy RJ (1996) Gastrointestinal uptake of biodegradable microparticles: effect of particle size. Pharm Res 13:1838–1845

    Article  CAS  Google Scholar 

  • Elias RJ, Kellerby SS, Decker EA (2008) Antioxidant activity of proteins and peptides. Crit Rev Food Sci Nutr 48:430–441

    Article  CAS  Google Scholar 

  • Elzoghby AO, El-Fotoh WSA, Elgindy NA (2011) Casein-based formulations as promising controlled release drug delivery systems. J Control Release 153:206–216

    Article  CAS  Google Scholar 

  • Esmaelizadeh P, Fakhroueian Z, Beigi AAM (2011) Synthesis of biopolymeric α-lactalbumin protein nanoparticles and nanospheres as green nanofluids using in drug delivery and food technology. J Nano Res 16:89–96

    Article  Google Scholar 

  • Esmali M, Ghaffari SM, Moosavi-Movadehi Z, Atri MS, Sharifizadeh A, Farhadi M, Yousefi R, Chobert JM, Haertle T, Moosavi-Movadehi AA (2011) Beta casein-micelle as a nanovehicle for solubility enhancement of curcumin: food industry application. LWT-Food Sci Technol 44:2166–2172

    Article  Google Scholar 

  • Ezpeleta I, Irache JM, Stainmesse S, Chabenat C, Gueguen J, Popineau Y, Orecchioni AM (1996) Gliadin nanoparticles for the controlled release of all- trans -retinoic acid. Int J Pharm 131:191–200

    Article  CAS  Google Scholar 

  • Gómez-Estaca J, Balaguer MP, Gavara R, Hernández-Muñoz P (2012) Formation of zein nanoparticles by electrodynamic atomization: effect of the main processing variables and suitability for encapsulating the food coloring and active ingredient curcumin. Food Hydrocoll 28:82–91

    Article  Google Scholar 

  • Graveland-Bikker JF, Koning RI, Koerten HK, Geels RBJ, Heeren RMA, de Kruif CG (2009) Structural characterization of α-lactalbumin nanotubes. Soft Matter 5:2020–2026

    Article  CAS  Google Scholar 

  • Gunasekaran S, Ko S, Xiao L (2007) Use of whey proteins for encapsulation and controlled delivery applications. J Food Eng 83:31–40

    Article  CAS  Google Scholar 

  • Huang Q, Yu H, Ru Q (2010) Bioavailability and delivery of nutraceuticals using nanotechnology. J Food Sci 75:R50–R57

    Article  CAS  Google Scholar 

  • Irache JM, Bergougnoux L, Ezpeleta I, Gueguen J, Orecchioni AM (1995) Optimization and in vitro stability of legumin nanoparticles obtained by a coacervation method. Int J Pharm 126:103–109

    Article  CAS  Google Scholar 

  • Jahanshani M, Babaei Z (2008) Protein nanoparticle: a unique system as drug delivery vehicles. Afr J Biotechnol 7:4926–4934

    Google Scholar 

  • Jun JY, Nguyen HH, Paik SYR, Chun HS, Kang BC (2011) Preparation of size-controlled bovine serum albumin (BSA) nanoparticles by a modified desolvation method. Food Chem 127:1892–1898

    Article  CAS  Google Scholar 

  • Kamau SM, Chelson SC, Chen W, Liu XM, Lu RR (2010) Alpha-lactalbumin: its production technologies and bioactive peptides. Comp Rev Food Sci Food Saf 9:197–212

    Article  CAS  Google Scholar 

  • Kaya-Celiker H, Mallikarjunan K (2012) Better nutrients and therapeutics delivery in food through nanotechnology. Food Eng Rev 4:114–123

    Article  CAS  Google Scholar 

  • Ko S, Gunasekaran S (2006) Preparation of sub-100-nm beta-lactoglobulin (BLG) nanoparticles. J Microencapsul 23:887–898

    Article  CAS  Google Scholar 

  • Kontopidis G, Holt C, Sawyer L (2004) β-Lactoglobulin: binding properties, structure, and function. J Dairy Sci 87:785–796

    Article  CAS  Google Scholar 

  • Kreuter J (2007) Nanoparticles—a historical perspective. Int J Pharm 331:1–10

    Article  CAS  Google Scholar 

  • Langer K, Balthasar S, Vogel V, Dinauer N, von Briessen H, Schubert D (2003) Optimization of the preparation process for human serum albumin (HSA) nanoparticles. Int J Pharm 257:169–180

    Article  CAS  Google Scholar 

  • Langer K, Anhorn MG, Steinhauser I, Dreis S, Celebi D, Schrickel N, Faust S, Vogel V (2008) Human serum albumin (HSA) nanoparticles: reproducibility of preparation process and kinetics of enzymatic degradation. Int J Pharm 347:109–117

    Article  CAS  Google Scholar 

  • Mehravar R, Jahanshahi M, Saghatoleslami N (2009) Production of biological nanoparticles from α-lactalbumin for drug delivery and food science application. Afr J Biotechnol 8:6822–6827

    CAS  Google Scholar 

  • Mehravar R, Jahanshahi M, Najafpour GD, Saghatoleslami N (2011) Applying the Taguchi method for optimized fabrication of α-lactalbumin nanoparticles as carrier in drug delivery and food science. Iranica J Energy Environ 2:87–91

    Google Scholar 

  • Mirshahi T, Irache JM, Nicolas C, Mirshahi M, Faure JP, Gueguen J, Hecquet C, Orecchioni AM (2002) Adaptive immune responses of legumin nanoparticles. J Drug Target 10:625–631

    Article  CAS  Google Scholar 

  • Mohan MS, Jurat-Fuentes JL, Harte F (2013) Binding of vitamin A by casein micelles in commercial skim milk. J Dairy Sci 96:790–798

    Article  CAS  Google Scholar 

  • Mohanraj VJ, Chen Y (2006) Nanoparticles—a review. Trop J Pharm Res 5:561–573

    Google Scholar 

  • Mohanty B, Aswal VK, Kohlbrecher J, Bohidar HB (2005) Synthesis of gelatin nanoparticles via simple coacervation. J Surf Sci Technol 21:149–160

    CAS  Google Scholar 

  • Müller-Buschbaum P, Gebhardt R, Roth SV, Metwalli E, Doster W (2007) Effect of calcium concentration on the structure of casein micelles in thin films. Biophys J 93:960–968

    Article  Google Scholar 

  • Podaralla S, Perumal O (2010) Preparation of zein nanoparticles by pH controlled nanoprecipitation. J Biomed Nanotechnol 6:312–317

    Article  CAS  Google Scholar 

  • Ramachandran R, Shanmughavel P (2010) Preparation and characterization of biopolymeric nanoparticles used in drug delivery. Indian J Biochem Biophys 47:56–59

    CAS  Google Scholar 

  • Raynes JK, Carver JA, Gras SL, Gerrard JA (2014) Protein nanostructures in food—Should we be worried? Trends Food Sci Technol 37: 42–50

    Article  CAS  Google Scholar 

  • Sailaja AK, Amareshwar P (2012) Preparation of BSA nanoparticles by desolvation technique using acetone as desolvating agent. Int J Pharm Sci Nanotechnol 5:1643–1647

    Google Scholar 

  • Sebak S, Mirzaei M, Malhotra M, Kulamarva A, Prakash S (2010) Human serum albumin nanoparticles as an efficient noscapine drug delivery system for potential use in breast cancer: preparation and in vitro analysis. Int J Nanomed 5:525–532

    CAS  Google Scholar 

  • Semo E, Kesselman E, Danino D, Livney YD (2007) Casein micelle as a natural nano-capsular vehicle for nutraceuticals. Food Hydrocoll 21:936–942

    Article  CAS  Google Scholar 

  • Singh HD, Wang G, Uludag H, Unsworth LD (2010) Poly-L-lysine-coated albumin nanoparticles: stability, mechanism for increasing in vitro enzymatic resilience, and siRNA release characteristics. Acta Biomater 6:4277–4284

    Article  CAS  Google Scholar 

  • Storp B, Engel A, Boeker A, Ploeger M, Langer K (2012) Albumin nanoparticles with predictable size by desolvation procedure. J Microencapsul 29:138–146

    Article  Google Scholar 

  • Sundar S, Kundu J, Kundu SC (2010) Biopolymeric nanoparticles. Sci Technol Adv Mater doi:10.1088/1468-6996/11/1/014104

    Google Scholar 

  • Taheri ES, Jahanshani M, Mosavian MTH (2012) Preparation, characterization and optimization of egg albumin nanoparticles as low molecular-weight drug delivery vehicle. Part Part Syst Charact 29:211–222

    Article  CAS  Google Scholar 

  • Teng Z, Luo Y, Wang Q (2012) Nanoparticles synthesized from soy protein: preparation, characterization, and application for nutraceutical encapsulation. J Agric Food Chem 60:2712–2720

    Article  CAS  Google Scholar 

  • Trevino SR, Scholtz JM, Pace CN (2008) Measuring and increasing protein solubility. J Pharm Sci 97:4155–4166

    Article  CAS  Google Scholar 

  • Vogel V, Langer K, Balthasar S, Schuck P, Mächtle W, Haase W, van den Broeck JA, Tziatzios C, Schubert D (2002) Characterization of serum albumin nanoparticles by sedimentation velocity analysis and electron microscopy. Progr Colloid Polym Sci 119:31–36

    Article  CAS  Google Scholar 

  • Weber C, Coester V, Kreuter J, Langer K (2000) Desolvation process and surface characterisation of protein nanoparticles. Int J Pharm 194:91–102

    Article  CAS  Google Scholar 

  • Weiss J, Takhistov P, McClements J (2006) Functional materials in food nanotechnology. J Food Sci 71:R107–R116

    Article  CAS  Google Scholar 

  • Xu H, Jiang Q, Reddy N, Yang Y (2011) Hollow nanoparticles from zein for potential medical applications. J Mater Chem 21:18227–18235

    Article  CAS  Google Scholar 

  • Zhong Q, Jin M (2009) Zein nanoparticles produced by liquid–liquid dispersion. Food Hydrocoll 23:2380–2387

    Article  CAS  Google Scholar 

  • Zimet P, Rosemberg D, Livney YD (2011) Re-assembled casein micelles and casein nanoparticles as nano-vehicles for omega-3-polyunsaturated fatty acids. Food Hydrocoll 25:1270–1276

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science + Business Media New York

About this chapter

Cite this chapter

Jiménez-Cruz, E., Arroyo-Maya, I., Hernández-Arana, A., Cornejo-Mazón, M., Hernández-Sánchez, H. (2015). Protein-Based Nanoparticles. In: Hernández-Sánchez, H., Gutiérrez-López, G. (eds) Food Nanoscience and Nanotechnology. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-319-13596-0_5

Download citation

Publish with us

Policies and ethics