Skip to main content

Multiscale and Nanostructural Approach to Fruits Stability

  • Chapter
  • First Online:

Part of the book series: Food Engineering Series ((FSES))

Abstract

Fruit ripening is a biochemical process that involves irreversible physiological changes leading to senescence. Freshness and quality of fruit depend on the texture, appearance and sensory attributes, which are determined by several biotic and abiotic factors that constrain fruit shelf life. These aspects have been analysed through a number of methods including modern and novel approaches involving a multiscale integration at the nano-, micro-, meso- and macroscales as a way to understand all phenomena as a whole. This chapter includes an explanation of how the multiscale approach by two integrative pathways, nano to macro and macro to nano, might contribute to the understanding of the stability of a complex system by considering cell morphology and some nanoscale technologies to precisely extend fruit stability. In the future, this multiscale approach may lead to the development of novel technological alternatives to retard senescence.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abera MK, Fanta SW, Verboven P, Ho QT, Carmeliet J, Nicolai BM (2012) Virtual fruit tissue generation based on cell growth modelling. Food Bioprocess Tech 6(4):859–869

    Google Scholar 

  • Agrawal GK, Pedreschi R, Barkla BJ, Bindschedler LV, Cramer R, Sarkar A, Renaut J, Job D, Rakwal R (2012) Translational plant proteomics: a perspective. J Proteomics 75(15):4588–4601

    Article  CAS  Google Scholar 

  • Aguilera JM (2011) Food microstructures for health, well-being, and pleasure. In: Aguilera JM, Simpson R (eds) Food engineering interfaces. Springer, New York, pp 577–588. ISBN 978-1-4419-7474-7

    Chapter  Google Scholar 

  • Baldazzi V, Bertin N, de Jong H, Génard M (2012) Towards multiscale plant models: integrating cellular networks. Trends Plant Sci 17(12):728–736

    Article  CAS  Google Scholar 

  • Basavegowda N, Idhayadhulla A, Lee YR (2014) Phyto-synthesis of gold nanoparticles using fruit extract of Hovenia dulcis and their biological activities. Ind Crops Prod 52:745–751

    Article  CAS  Google Scholar 

  • Benatti MR, Penning BW, Carpita NC, McCann MC (2012) We are good to grow: dynamic integration of cell wall architecture with the machinery of growth. Front Plant Sci 3:187

    Article  CAS  Google Scholar 

  • Bowles M, Lu J (2014) Removing the blinders: a literature review on the potential of nanoscale technologies for the management of supply chains. Technol Forecast Soc Chang 82:190–198

    Article  Google Scholar 

  • Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3(1):1–30

    Article  CAS  Google Scholar 

  • Casas-Forero N, Caez-Ramirez G (2011) Morfometric and quality changes by application of three calcium sources under mild termal treatment in pre-cut fresh melon (Cucumis melo L.). Rev Mex Ing Quím 10(3):431–444

    CAS  Google Scholar 

  • Chen F, Zhang L, An H, Yang H, Sun X, Liu H, Yao Y, Li L (2009) The nanostructure of hemicellulose of crisp and soft Chinese cherry (Prunus pseudocerasus L.) cultivars at different stages of ripeness. Lebenson Wiss Technol 42(1):125–130

    Article  CAS  Google Scholar 

  • Chen F, Liu H, Yang H, Lai S, Cheng X, Xin Y, Yang B, Hou H, Yao Y, Zhang S, Bu G, Deng Y (2011) Quality attributes and cell wall properties of strawberries (Fragaria annanassa Duch.) under calcium chloride treatment. Food Chem 126(2):450–459

    Article  CAS  Google Scholar 

  • Chiew YL, Cheong KY (2012) Growth of SiC nanowires using oil palm empty fruit bunch fibres infiltrated with tetraethyl orthosilicate. Physica E Low Dimens Syst Nanostruct 44(10):2041–2049

    Article  CAS  Google Scholar 

  • Chung C, McClements DJ (2014) Structure-function relationships in food emulsions: improving food quality and sensory perception. Food Struct 1(2):106–126

    Article  Google Scholar 

  • Chylińska M, Szymańska-Chargot M, Zdunek A (2014) Imaging of polysaccharides in the tomato cell wall with Raman microspectroscopy. Plant Methods 10(1):14

    Article  Google Scholar 

  • Cifuentes A (2012) Food analysis: present, future, and foodomics. ISRN Anal Chem 2012:1–16. doi:10.5402/2012/801607

    Article  Google Scholar 

  • Cranford S, Buehler MJ (2010) Materiomics: biological protein materials, from nano to macro. Nanotechnol Sci Appl 12(3):127–148

    Google Scholar 

  • Cybulska J, Zdunek A, Psonka-Antonczyk KM, Stokke BT (2013) The relation of apple texture with cell wall nanostructure studied using an atomic force microscope. Carbohydr Polym 92(1):128–137

    Article  CAS  Google Scholar 

  • De Medeiros BG, Pinheiro AC, Carneiro-da-Cunha MG, Vicente AA (2012) Development and characterization of a nanomultilayer coating of pectin and chitosan—Evaluation of its gas barrier properties and application on Tommy Atkins mangoes. J Food Eng 110(3):457–464

    Article  CAS  Google Scholar 

  • Duvetter T, Sila DN, Van Buggenhout S, Jolie R, Van Loey A, Hendrickx M (2009) Pectins in processed fruit and vegetables: part I-stability and catalytic activity of pectinases. Compr Rev Food Sci Food Saf 8(2):75–85

    Article  CAS  Google Scholar 

  • Edison TJI, Sethuraman MG (2012) Instant green synthesis of silver nanoparticles using Terminalia chebula fruit extract and evaluation of their catalytic activity on reduction of methylene blue. Process Biochem 47(9):1351–1357

    Article  CAS  Google Scholar 

  • Epriliati I, D’Arcy B, Gidley M (2009) Nutriomic analysis of fresh and processed fruit products. 1. During in vitro digestions. J Agric Food Chem 57(8):3363–3376

    Article  CAS  Google Scholar 

  • Fangel JU, Ulvskov P, Knox JP, Mikkelsen MD, Harholt J, Popper ZA, Willats WG (2012) Cell wall evolution and diversity. Front Plant Sci 3:152

    Article  CAS  Google Scholar 

  • Fanta SW, Abera MK, Ho QT, Verboven P, Carmeliet J, Nicolai BM (2013) Microscale modeling of water transport in fruit tissue. J Food Eng 10:229–237

    Article  Google Scholar 

  • Fathi M, Varshosaz J (2013) Novel hesperetin loaded nanocarriers for food fortification: production and characterization. J Funct Foods 5(3):1382–1391

    Article  CAS  Google Scholar 

  • Fava J, Hodara K, Nieto A, Guerrero S, Alzamora SM, Castro MA (2011) Structure (micro, ultra, nano), color and mechanical properties of Vitis labrusca L. (grape berry) fruits treated by hydrogen peroxide, UV-C irradiation and ultrasound. Food Res Int 44(9):2938–2948

    Article  CAS  Google Scholar 

  • Figueroa CR, Opazo MC, Vera P, Arriagada O, Díaz M, Moya-León MA (2012) Effect of postharvest treatment of calcium and auxin on cell wall composition and expression of cell wall-modifying genes in the Chilean strawberry (Fragaria chiloensis) fruit. Food Chem 132(4):2014–2022

    Article  CAS  Google Scholar 

  • Galant AL, Widmer WW, Luzio GA, Cameron RG (2014) Characterization of molecular structural changes in pectin during juice cloud destabilization in frozen concentrated orange juice. Food Hydrocoll 41:10–18

    Article  CAS  Google Scholar 

  • Gandía-Herrero F, Jiménez-Atiénzar M, Cabanes J, García-Carmona F, Escribano J (2010) Stabilization of the bioactive pigment of opuntia fruits through maltodextrin encapsulation. J Agric Food Chem 58(19):10646–10652

    Article  Google Scholar 

  • Ghodake GS, Deshpande NG, Lee YP, Jin ES (2010) Pear fruit extract-assisted room-temperature biosynthesis of gold nanoplates. Colloids Surf B Biointerfaces 75(2):584–589

    Article  CAS  Google Scholar 

  • Gibson LJ, Interface JRS (2012) The hierarchical structure and mechanics of plant materials J R Soc Interface 9(76):2749–2766

    Article  CAS  Google Scholar 

  • Giraldo JP, Landry MP, Faltermeier SM, McNicholas TP, Iverson NM, Boghossian AA, Reuel NF, Hilmer AJ, Sen F, Brew JA, Strano MS (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 13(4):400–408

    Article  CAS  Google Scholar 

  • Guadarrama-Lezama AY, Dorantes-Alvarez L, Jaramillo-Flores ME, Pérez-Alonso C, Niranjan K, Gutiérrez-López GF, Alamilla-Beltrán L (2012) Preparation and characterization of non-aqueous extracts from chilli (Capsicum annuum L.) and their microencapsulates obtained by spray-drying. J Food Eng 112(1–2):29–37

    Article  CAS  Google Scholar 

  • Herremans E, Verboven P, Defraeye T, Rogge S, Ho QT, Hertog MLATM, Verlinden BE, Bongaers E, Wevers M, Nicolai BM (2014) X-ray CT for quantitative food microstructure engineering: the apple case. Nucl Instrum Methods Phy Res B 324:88–94

    Article  CAS  Google Scholar 

  • Ho QT, Carmeliet J, Datta AK, Defraeye T, Delele MA, Herremans E, Opara L, Ramon H, Tijskens E, Sman R, Liedekerke PV, Verboven P, Nicolaï BM (2013) Multiscale modeling in food engineering. J Food Eng 114(3):279–291

    Article  Google Scholar 

  • Huerta-Ocampo JÁ, Osuna-Castro JA, Lino-López GJ, Barrera-Pacheco A, Mendoza-Hernández G, De León-Rodríguez A, Barba de la Rosa AP (2012) Proteomic analysis of differentially accumulated proteins during ripening and in response to 1-MCP in papaya fruit. J Proteomics 75(7):2160–2169

    Article  CAS  Google Scholar 

  • Hyodo H, Terao A, Furukawa J, Sakamoto N, Yurimoto H, Satoh S, Iwai H (2013) Tissue specific localization of pectin-Ca2+ cross-linkages and pectin methyl-esterification during fruit ripening in tomato (Solanum lycopersicum). PloS One 8(11):e78949

    Article  Google Scholar 

  • Jeffery J, Holzenburg A, King S (2012) Physical barriers to carotenoid bioaccessibility. Ultrastructure survey of chromoplast and cell wall morphology in nine carotenoid-containing fruits and vegetables. J Sci Food Agric 92(13):2594–2602

    Article  CAS  Google Scholar 

  • Kilcrease J, Collins AM, Richins RD, Timlin JA, O’Connell MA (2013) Multiple microscopic approaches demonstrate linkage between chromoplast architecture and carotenoid composition in diverse Capsicum annuum fruit. Plant J 76(6):1074–1083

    Article  CAS  Google Scholar 

  • Kulkarni SD, Sinha BN, Kumar KJ (2014) Modified release and antioxidant stable Lagenaria siceraria extract microspheres using co-precipitated starch. Int J Biol Macromol 66:40–45

    Article  CAS  Google Scholar 

  • Lee KJD, Marcus SE, Knox JP (2011) Cell wall biology: perspectives from cell wall imaging. Mol Plant 4(2):212–219

    Article  CAS  Google Scholar 

  • Li Z, Li P, Yang H, Liu J (2013a) Internal mechanical damage prediction in tomato compression using multiscale finite element models. J Food Eng 116(3):639–647

    Article  Google Scholar 

  • Li X, Zhu X, Zhao N, Fu D, Li J, Chen W, Chen W (2013b) Effects of hot water treatment on anthracnose disease in papaya fruit and its possible mechanism. Postharvest Biol Technol 86:437–446

    Article  CAS  Google Scholar 

  • Liu H, Chen F, Yang H, Yao Y, Gong X, Xin Y, Ding C (2009) Effect of calcium treatment on nanostructure of chelate-soluble pectin and physicochemical and textural properties of apricot fruits. Food Res Int 42(8):1131–1140

    Article  CAS  Google Scholar 

  • Lu P, Hsieh YL (2012) Cellulose isolation and core–shell nanostructures of cellulose nanocrystals from chardonnay grape skins. Carbohydr Polym 87(4):2546–2553

    Article  CAS  Google Scholar 

  • Luca A, Cilek B, Hasirci V, Sahin S, Sumnu G (2012) Effect of degritting of phenolic extract from sour cherry pomace on encapsulation efficiency—production of nano-suspension. Food Bioprocess Technol 6(9):2494–2502

    Article  Google Scholar 

  • Mebatsion HK, Verboven P, Ho QT, Verlinden BE, Nicolaï BM (2008) Modelling fruit (micro)structures, why and how? Trends Food Sci Technol 19(2):59–66

    Article  CAS  Google Scholar 

  • Morales-Delgado DY, Téllez-Medina DI, Rivero-Ramírez NL, Arellano-Cárdenas S, López-Cortez S, Hernández-Sánchez H, Gutiérrez-López G, Cornejo-Mazón M (2014) Efecto del secado convectivo en el contenido total de antocianinas, actividad antioxidante y cambios morfométricos de células de parénquima de fresa (Fragaria X ananassa Dutch). Rev Mex Ing Quim 13(1):179–187

    CAS  Google Scholar 

  • Otoni CG, De Moura MR, Aouada FA, Camilloto GP, Cruz RS, Lorevice MV, De Soares SFF, Mattoso LHC (2014) Antimicrobial and physical-mechanical properties of pectin/papaya puree/cinnamaldehyde nanoemulsion edible composite films. Food Hydrocoll 41:188–194

    Article  CAS  Google Scholar 

  • Payasi A, Mishra NN, Chaves ALS, Singh R (2009) Biochemistry of fruit softening: an overview. Physiol Mol Biol Plants 15(2):103–113

    Article  CAS  Google Scholar 

  • Perotti VE, Moreno AS, Podestá FE (2014) Physiological aspects of fruit ripening: the mitochondrial connection. Mitochondrion 17C:1–6

    Article  Google Scholar 

  • Perrot N, Trelea IC, Baudrit C, Trystram G, Bourgine P (2011) Modelling and analysis of complex food systems: state of the art and new trends. Trends Food Sci Technol 22(6):304–314

    Article  CAS  Google Scholar 

  • Ramos B, Miller FA, Brandão TRS, Teixeira P, Silva CLM (2013) Fresh fruits and vegetables—an overview on applied methodologies to improve its quality and safety. Innov Food Sci Emerg Technol 20:1–15

    Article  CAS  Google Scholar 

  • Sathishkumar G, Gobinath C, Karpagam K, Hemamalini V, Premkumar K, Sivaramakrishnan S (2012) Phyto-synthesis of silver nanoscale particles using Morinda citrifolia L. and its inhibitory activity against human pathogens. Colloids Surf B Biointerfaces 95:235–240

    Article  CAS  Google Scholar 

  • Scholes GD, Sargent EH (2014) Bioinspired materials: boosting plant biology. Nat Mater 13(4):329–331

    Article  CAS  Google Scholar 

  • Seguí L, Fito PJ, Fito P (2010) Analysis of structure-property relationships in isolated cells during OD treatments. Effect of initial structure on the cell behaviour. J Food Eng 99(4):417–423

    Article  Google Scholar 

  • Sekhon BS (2014) Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl 4(7):31–53

    Article  Google Scholar 

  • Shiga TM, Fabi JP, do Nascimento JR, Petkowicz CL, Vriesmann LC, Lajolo FM, Cordenunsi BR (2009) Changes in cell wall composition associated to the softening of ripening papaya: evidence of extensive solubilization of large molecular mass galactouronides. J Agric Food Chem 57(15):7064–7071

    Article  CAS  Google Scholar 

  • Swaroopa Rani T, Podile AR (2014) Extracellular matrix-associated proteome changes during non-host resistance in citrus- Xanthomonas interactions. Physiol Plant 150(4):565–579

    Article  CAS  Google Scholar 

  • Tapia-Ochoategui AP, Camacho-Díaz BH, Perea-Flores MJ, Ordóñez-Ruíz IM, Gutiérrez-López GF, Dávila-Ortiz G (2010) Morfometric changes during the traditional curing process of vanilla pods (Vanilla planifolia; Orchidaceae). Rev Mex Ing Quím 10(1):105–115

    Google Scholar 

  • Trystram G (2012) Modelling of food and food processes. J Food Eng 110(2):269–277

    Article  CAS  Google Scholar 

  • Van der Sman, RGM (2012) Soft matter approaches to food structuring. Adv Colloid Interface Sci 176–177:18–30

    Article  Google Scholar 

  • Van der Sman RGM, Vergeldt FJ, Van As H, Van Dalen G, Voda A, Van Duynhoven JPM (2014) Multiphysics pore-scale model for the rehydration of porous foods. Innov Food Sci Emerg Technol 24:69–79

    Article  Google Scholar 

  • Vázquez-Gutiérrez JL, Quiles A, Hernando I, Pérez-Munuera I (2011) Changes in the microstructure and location of some bioactive compounds in persimmons treated by high hydrostatic pressure. Postharvest Biol Technol 61(2–3):137–144

    Article  Google Scholar 

  • Verrijssen TAJ, Balduyck LG, Christiaens S, Van Loey AM, Van Buggenhout S, Hendrickx ME (2014) The effect of pectin concentration and degree of methyl-esterification on the in vitro bioaccessibility of b-carotene-enriched emulsions. Food Res Int 57:71–78

    Article  CAS  Google Scholar 

  • Wolf S, Hématy K, Höfte H (2012) Growth control and cell wall signaling in plants. Annu Rev Plant Biol 63:381–407

    Article  CAS  Google Scholar 

  • Zhang L, Chen F, Yang H, Ye X, Sun X, Liu D, Yang B, An H, Deng Y (2012) Effects of temperature and cultivar on nanostructural changes of water-soluble pectin and chelate-soluble pectin in peaches. Carbohydr Polym 87(1):816–821

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo F. Gutierrez-López BSc, MSc, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science + Business Media New York

About this chapter

Cite this chapter

Cáez-Ramirez, G., Téllez-Medina, D., Gutierrez-López, G. (2015). Multiscale and Nanostructural Approach to Fruits Stability. In: Hernández-Sánchez, H., Gutiérrez-López, G. (eds) Food Nanoscience and Nanotechnology. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-319-13596-0_16

Download citation

Publish with us

Policies and ethics