Skip to main content

Holographic Glucose Sensors

  • Chapter
  • First Online:
Holographic Sensors

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Rapid glucose sensors have applications in the screening, diagnosis and monitoring of diabetes at point of care. This chapter demonstrates the design, fabrication and clinical trial of reusable holographic glucose sensors. Holographic sensors comprised boronic acid derivative functionalised acrylamide matrices, which consisted of Bragg diffraction gratings that colorimetrically report on the concentration of glucose in aqueous solutions. The optical properties of the sensor were designed and characterised by computational analysis. The sensors were fabricated by combining the advantages of multi-beam interference and in situ size reduction of silver metal (Ag0) nanoparticles (NPs) by single-pulse laser writing. Fully-quantitative narrow-band (monochromatic) readouts were attained through spectrophotometry. The advantages of holographic sensors over other sensing mechanisms are (i) reusability, (ii) amenable to mass manufacturing through laser writing, (iii) readouts in visible as well as near-infrared regions of the spectrum, and (v) reproducibility to sense glucose concentrations up to 400 mM using a low sample volume (<500 μl). Interference due to other metabolites such as lactate and fructose was also evaluated. Trials of the sensor in the urine samples of diabetic patients demonstrated that the sensor had improved performance as compared to Multistix® 10 SG read by CLINITEK Status®, while having comparable performance with fully-automated Dimension® Clinical Chemistry System. Holographic glucose sensors may have clinical applicability for diabetes screening or diagnosis of bacterial urinary tract infections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang CJ, Losego MD, Braun PV (2013) Hydrogel-based glucose sensors: effects of phenylboronic acid chemical structure on response. Chem Mater 25(15):3239–3250. doi:10.1021/Cm401738p

    Article  CAS  Google Scholar 

  2. Yetisen AK, Butt H, da Cruz Vasconcellos F, Montelongo Y, Davidson CAB, Blyth J, Chan L, Carmody JB, Vignolini S, Steiner U, Baumberg JJ, Wilkinson TD, Lowe CR (2014) Light-directed writing of chemically tunable narrow-band holographic sensors. Adv Opt Mater 2(3):250–254. doi:10.1002/adom.201300375

    Article  Google Scholar 

  3. Danaei G, Finucane MM, Lu Y, Singh GM, Cowan MJ, Paciorek CJ, Lin JK, Farzadfar F, Khang YH, Stevens GA, Rao M, Ali MK, Riley LM, Robinson CA, Ezzati M, Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating G (2011) National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet 378(9785):31–40. doi:10.1016/S0140-6736(11)60679-X

  4. Atkinson MA, Eisenbarth GS, Michels AW (2014) Type 1 diabetes. Lancet 383(9911):69–82. doi:10.1016/S0140-6736(13)60591-7

    Article  Google Scholar 

  5. Diabetes Atlas (2013) 6 edn. International Diabetes Federation

    Google Scholar 

  6. Ravallion M (2013) How long will it take to lift one billion people out of poverty? World Bank Res Obser 28(2):139–158. doi:10.1093/Wbro/Lkt003

    Article  Google Scholar 

  7. Kratz A, Ferraro M, Sluss PM, Lewandrowski KB (2004) Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Laboratory reference values. N Engl J Med 351(15):1548–1563. doi:10.1056/NEJMcpc049016

    Article  CAS  Google Scholar 

  8. Kabilan S, Marshall AJ, Sartain FK, Lee MC, Hussain A, Yang XP, Blyth J, Karangu N, James K, Zeng J, Smith D, Domschke A, Lowe CR (2005) Holographic glucose sensors. Biosens Bioelectron 20(8):1602–1610. doi:10.1016/j.bios.2004.07.005

    Article  CAS  Google Scholar 

  9. Hisamitsu I, Kataoka K, Okano T, Sakurai Y (1997) Glucose-responsive gel from phenylborate polymer and poly (vinyl alcohol): prompt response at physiological pH through the interaction of borate with amino group in the gel. Pharm Res 14(3):289–293. doi:10.1023/A:1012033718302

    Article  CAS  Google Scholar 

  10. Springsteen G, Wang BH (2002) A detailed examination of boronic acid-diol complexation. Tetrahedron 58(26):5291–5300. doi:10.1016/S0040-4020(02)00489-1

  11. Asher SA, Alexeev VL, Goponenko AV, Sharma AC, Lednev IK, Wilcox CS, Finegold DN (2003) Photonic crystal carbohydrate sensors: low ionic strength sugar sensing. J Am Chem Soc 125(11):3322–3329. doi:10.1021/ja021037h

    Article  CAS  Google Scholar 

  12. Lowe CR, Davidson CAB, Blyth J, Kabilan S, Marshall AJ, Madrigal Gonzalez B, James AP (2003) Method of detecting an analyte in a fluid. WO Patent Application 2003087899

    Google Scholar 

  13. Lee MC, Kabilan S, Hussain A, Yang X, Blyth J, Lowe CR (2004) Glucose-sensitive holographic sensors for monitoring bacterial growth. Anal Chem 76(19):5748–5755. doi:10.1021/ac049334n

    Article  CAS  Google Scholar 

  14. Sartain FK, Yang X, Lowe CR (2006) Holographic lactate sensor. Anal Chem 78(16):5664–5670. doi:10.1021/ac060416g

    Article  CAS  Google Scholar 

  15. Kraiskii AV, Postnikov VA, Sultanov TT, Khamidul in AV (2010) Holographic sensors for diagnostics of solution components. IEEE J Quantum Electron 40(2):178–182. doi:10.1070/Qe2010v040n02abeh014169

    Article  CAS  Google Scholar 

  16. Lowe CR, Blyth J, Kabilan S, Hussain A, Yang XP, Sartain FK, Lee MC (2004) Holographic Sensor. WO Patent Application 2004081624 A1

    Google Scholar 

  17. Yang X, Lee MC, Sartain F, Pan X, Lowe CR (2006) Designed boronate ligands for glucose-selective holographic sensors. Chemistry 12(33):8491–8497. doi:10.1002/chem.200600442

    Article  CAS  Google Scholar 

  18. Dean KES, Horgan AM, Marshall AJ, Kabilan S, Pritchard J (2006) Selective holographic detection of glucose using tertiary amines. Chem Commun 33:3507–3509. doi:10.1039/B605778k

    Article  Google Scholar 

  19. Kabilan S, Lee MC, Horgan AM, Medlock KES (2007) Novel boronate complex and its use in a glucose sensor. WO Patent Application 2007054689:A1

    Google Scholar 

  20. Worsley GJ, Tourniaire GA, Medlock KE, Sartain FK, Harmer HE, Thatcher M, Horgan AM, Pritchard J (2007) Continuous blood glucose monitoring with a thin-film optical sensor. Clin Chem 53(10):1820–1826. doi:10.1373/clinchem.2007.091629

    Article  CAS  Google Scholar 

  21. Worsley GJ, Tourniaire GA, Medlock KE, Sartain FK, Harmer HE, Thatcher M, Horgan AM, Pritchard J (2008) Measurement of glucose in blood with a phenylboronic acid optical sensor. J Diabetes Sci Technol 2(2):213–220. doi:10.1177/193229680800200207

  22. Farandos NM, Yetisen AK, Monteiro MJ, Lowe CR, Yun SH (2014) Contact lens sensors in ocular diagnostics. Adv Healthc Mater. doi:10.1002/adhm.201400504

  23. Domschke A, Kabilan S, Anand R, Caines M, Fetter D, Griffith P, James K, Karangu N, Smith D, Vargas M, Zeng J, Hussain A, Yang XP, Blyth J, Mueller A, Herbrechtsmeier P, Lowe CR (2004) Holographic sensors in contact lenses for minimally-invasive glucose measurements. Proc IEEE Sens 3:1320–1323. doi:10.1109/Icsens.2004.1426425

    Google Scholar 

  24. Domschke A, March WF, Kabilan S, Lowe C (2006) Initial clinical testing of a holographic non-invasive contact lens glucose sensor. Diabetes Technol Ther 8(1):89–93. doi:10.1089/dia.2006.8.89

    Article  CAS  Google Scholar 

  25. Lowe CR, Kabilan S, Blyth J, Domschke A, Smith D, Karangu N (2005) Ophthalmic device comprising a holographic sensor. 2005031442 A1 (Application)

    Google Scholar 

  26. Burles B, Millington RB, Lowe CR, Kabilan S, Blyth J (2012) Ophthalmic device comprising a holographic sensor. US Patent 8,241,574 B2

    Google Scholar 

  27. Baca JT, Finegold DN, Asher SA (2007) Tear glucose analysis for the noninvasive detection and monitoring of diabetes mellitus. Ocul Surf 5(4):280–293. doi:10.1016/S1542-0124(12)70094-0

  28. Yang XP, Pan XH, Blyth J, Lowe CR (2008) Towards the real-time monitoring of glucose in tear fluid: holographic glucose sensors with reduced interference from lactate and pH. Biosens Bioelectron 23(6):899–905. doi:10.1016/j.bios.2007.09.016

    Article  CAS  Google Scholar 

  29. Yetisen AK, Montelongo Y, da Cruz Vasconcellos F, Martinez-Hurtado JL, Neupane S, Butt H, Qasim MM, Blyth J, Burling K, Carmody JB, Evans M, Wilkinson TD, Kubota LT, Monteiro MJ, Lowe CR (2014) Reusable, robust, and accurate laser-generated photonic nanosensor. Nano Lett 14(6):3587–3593. doi:10.1021/nl5012504

    Article  CAS  Google Scholar 

  30. Simerville JA, Maxted WC, Pahira JJ (2005) Urinalysis: a comprehensive review. Am Fam Physician 71(6):1153–1162

    Google Scholar 

  31. Scholl-Burgi S, Santer R, Ehrich JHH (2004) Long-term outcome of renal glucosuria type 0: the original patient and his natural history. Nephrol Dial Transpl 19(9):2394–2396. doi:10.1093/Ndt/Gfh366

    Article  Google Scholar 

  32. Ferrannini E (2011) Learning from glycosuria. Diabetes 60(3):695–696. doi:10.2337/Db10-1667

    Article  CAS  Google Scholar 

  33. Scherstén B, Dahlqvist A, Fritz H, Köhler L, Westlund L (1968) Screening for bacteriuria with a test paper for glucose. JAMA 204(3):205–208. doi:10.1001/jama.1968.03140160015004

    Article  Google Scholar 

  34. Wang J (2008) Electrochemical glucose biosensors. Chem Rev 108(2):814–825. doi:10.1021/cr068123a

    Article  CAS  Google Scholar 

  35. Heller A, Feldman B (2008) Electrochemical glucose sensors and their applications in diabetes management. Chem Rev 108(7):2482–2505. doi:10.1021/Cr068069y

    Article  CAS  Google Scholar 

  36. Davies MJ, Williams DR, Metcalfe J, Day JL (1993) Community screening for non-insulin-dependent diabetes mellitus: self-testing for post-prandial glycosuria. Q J Med 86(10):677–684

    Article  CAS  Google Scholar 

  37. Hanson RL, Nelson RG, McCance DR, Beart JA, Charles MA, Pettitt DJ, Knowler WC (1993) Comparison of screening tests for non-insulin-dependent diabetes mellitus. Arch Intern Med 153(18):2133–2140. doi:10.1001/archinte.1993.00410180083010

  38. Friderichsen B, Maunsbach M (1997) Glycosuric tests should not be employed in population screenings for NIDDM. J Public Health 19(1):55–60

    Article  CAS  Google Scholar 

  39. Engelgau MM, Narayan KM, Herman WH (2000) Screening for type 2 diabetes. Diabetes Care 23(10):1563–1580. doi:10.2337/diacare.23.10.1563

  40. Feldman JM, Kelley WN, Lebovitz HE (1970) Inhibition of glucose oxidase paper tests by reducing metabolites. Diabetes 19(5):337–343. doi:10.2337/diab.19.5.337

  41. Rotblatt MD, Koda-Kimble MA (1987) Review of drug interference with urine glucose tests. Diabetes Care 10(1):103–110. doi:10.2337/diacare.10.1.103

  42. van der Sande MAB, Walraven GEL, Bailey R, Rowley JTF, Banya WAS, Nyan OA, Faal H, Ceesay SM, Milligan PJM, McAdam KPWJ (1999) Is there a role for glycosuria testing in sub-Saharan Africa? Trop Med Int Health 4(7):506–513. doi:10.1046/j.1365-3156.1999.00430.x

  43. Wei OY, Teece S (2006) Urine dipsticks in screening for diabetes mellitus. Emerg Med J 23(2):139–140. doi:10.1136/emj.2005.033456

    Article  Google Scholar 

  44. Chemstrip 10 MD package insert, cobas, Roche (2013)

    Google Scholar 

  45. Brooks T, Keevil CW (1997) A simple artificial urine for the growth of urinary pathogens. Lett Appl Microbiol 24(3):203–206. doi:10.1046/j.1472-765X.1997.00378.x

  46. Guan Y, Zhang YJ (2013) Boronic acid-containing hydrogels: synthesis and their applications. Chem Soc Rev 42(20):8106–8121. doi:10.1039/C3cs60152h

    Article  CAS  Google Scholar 

  47. Fritz H, Köhler L, Scherstén B (1969) Assessment of subnormal urinary glucose as an indicator of bacteriuria in population studies: an investigation of 3,911 subjects between the ages of four and sixty-five years. Acta Med Scand Berlin 504:1–39

    CAS  Google Scholar 

  48. Bensman A, Dunand O, Ulinski T (2009) Urinary tract infections. In: Avner E, Harmon W, Niaudet P, Yoshikawa N (eds) Pediatric nephrology, 6th edn. Springer, Berlin, pp 1297–1310. doi:10.1007/978-3-540-76341-3_54

  49. Wang A, Nizran P, Malone MA, Riley T (2013) Urinary tract infections. Prim Care 40(3):687–706. doi:10.1016/j.pop.2013.06.005

    Article  Google Scholar 

  50. Talasniemi JP, Pennanen S, Savolainen H, Niskanen L, Llesivuori J (2008) Analytical investigation: assay of D-lactate in diabetic plasma and urine. Clin Biochem 41(13):1099–1103. doi:10.1016/j.clinbiochem.2008.06.011

    Article  CAS  Google Scholar 

  51. Kawasaki T, Akanuma H, Yamanouchi T (2002) Increased fructose concentrations in blood and urine in patients with diabetes. Diabetes Care 25(2):353–357. doi:10.2337/diacare.25.2.353

  52. Luceri C, Caderni G, Lodovici M, Spagnesi MT, Monserrat C, Lancioni L, Dolara P (1996) Urinary excretion of sucrose and fructose as a predictor of sucrose intake in dietary intervention studies. Cancer Epidem Biomar 5(3):167–171

    CAS  Google Scholar 

  53. Johner SA, Libuda L, Shi L, Retzlaff A, Joslowski G, Remer T (2010) Urinary fructose: a potential biomarker for dietary fructose intake in children. Eur J Clin Nutr 64(11):1365–1370. doi:10.1038/ejcn.2010.160

    Article  CAS  Google Scholar 

  54. Tasevska N, Runswick SA, Welch AA, McTaggart A, Bingham SA (2009) Urinary sugars biomarker relates better to extrinsic than to intrinsic sugars intake in a metabolic study with volunteers consuming their normal diet. Eur J Clin Nutr 63(5):653–659. doi:10.1038/ejcn.2008.21

    Article  CAS  Google Scholar 

  55. Richterich R, Dauwalder H (1971) Determination of plasma glucose by hexokinase-glucose-6-phosphate dehydrogenase method. Schweiz Med Wochenschr 101(17):615–618

    CAS  Google Scholar 

  56. Booklet, Glucose Assay, Dimension Clinical Chemistry System, Siemens (2014)

    Google Scholar 

  57. Marbach EP, Weil MH (1967) Rapid enzymatic measurement of blood lactate and pyruvate use and significance of metaphosphoric acid as a common precipitant. Clin Chem 13(4):314–325

    CAS  Google Scholar 

  58. Protocol, Fructose Assay Kit (ab83380), Abcam (2014)

    Google Scholar 

  59. Jin LJ, Li SF (1999) Screening of carbohydrates in urine by capillary electrophoresis. Electrophoresis 20(17):3450–3454. doi:10.1002/(SICI)1522-2683(19991101)20:17<3450:AID-ELPS3450>3.0.CO;2-G

    Article  CAS  Google Scholar 

  60. Wu Q, Wang L, Yu H, Wang J, Chen Z (2011) Organization of glucose-responsive systems and their properties. Chem Rev 111(12):7855–7875. doi:10.1021/cr200027j

    Article  CAS  Google Scholar 

  61. Bankar SB, Bule MV, Singhal RS, Ananthanarayan L (2009) Glucose oxidase—an overview. Biotechnol Adv 27(4):489–501. doi:10.1016/j.biotechadv.2009.04.003

    Article  CAS  Google Scholar 

  62. Liu Y, Deng C, Tang L, Qin A, Hu R, Sun JZ, Tang BZ (2011) Specific detection of D-glucose by a tetraphenylethene-based fluorescent sensor. J Am Chem Soc 133(4):660–663. doi:10.1021/ja107086y

    Article  CAS  Google Scholar 

  63. Cummins BM, Garza JT, Cote GL (2013) Optimization of a Concanavalin A-based glucose sensor using fluorescence anisotropy. Anal Chem 85(11):5397–5404. doi:10.1021/ac303689j

    Article  CAS  Google Scholar 

  64. Zhai D, Liu B, Shi Y, Pan L, Wang Y, Li W, Zhang R, Yu G (2013) Highly sensitive glucose sensor based on pt nanoparticle/polyaniline hydrogel heterostructures. ACS Nano 7(4):3540–3546. doi:10.1021/nn400482d

    Article  CAS  Google Scholar 

  65. Invernale MA, Tang BC, York RL, Le L, Hou DY, Anderson DG (2014) Microneedle electrodes toward an amperometric glucose-sensing smart patch. Adv healthc mater 3(3):338–342. doi:10.1002/adhm.201300142

    Article  CAS  Google Scholar 

  66. Guo C, Huo H, Han X, Xu C, Li H (2014) Ni/CdS bifunctional Ti@TiO2 core-shell nanowire electrode for high-performance nonenzymatic glucose sensing. Anal Chem 86(1):876–883. doi:10.1021/ac4034467

    Article  CAS  Google Scholar 

  67. Wooten M, Karra S, Zhang M, Gorski W (2014) On the direct electron transfer, sensing, and enzyme activity in the glucose oxidase/carbon nanotubes system. Anal Chem 86(1):752–757. doi:10.1021/ac403250w

    Article  CAS  Google Scholar 

  68. Steiner MS, Duerkop A, Wolfbeis OS (2011) Optical methods for sensing glucose. Chem Soc Rev 40(9):4805–4839. doi:10.1039/c1cs15063d

    Article  CAS  Google Scholar 

  69. He H, Xu X, Wu H, Jin Y (2012) Enzymatic plasmonic engineering of Ag/Au bimetallic nanoshells and their use for sensitive optical glucose sensing. Adv Mater 24(13):1736–1740. doi:10.1002/adma.201104678

    Article  CAS  Google Scholar 

  70. Wu W, Mitra N, Yan EC, Zhou S (2010) Multifunctional hybrid nanogel for integration of optical glucose sensing and self-regulated insulin release at physiological pH. ACS Nano 4(8):4831–4839. doi:10.1021/nn1008319

    Article  CAS  Google Scholar 

  71. Muscatello MM, Stunja LE, Asher SA (2009) Polymerized crystalline colloidal array sensing of high glucose concentrations. Anal Chem 81(12):4978–4986. doi:10.1021/ac900006x

    Article  Google Scholar 

  72. Honda M, Kataoka K, Seki T, Takeoka Y (2009) Confined stimuli-responsive polymer gel in inverse opal polymer membrane for colorimetric glucose sensor. Langmuir 25(14):8349–8356. doi:10.1021/la804262b

    Article  CAS  Google Scholar 

  73. Lee YJ, Pruzinsky SA, Braun PV (2004) Glucose-sensitive inverse opal hydrogels: analysis of optical diffraction response. Langmuir 20(8):3096–3106. doi:10.1021/la035555x

  74. Tierney S, Falch BMH, Hjelme DR, Stokke BT (2009) Determination of glucose levels using a functionalized hydrogel-optical fiber biosensor: toward continuous monitoring of blood glucose in vivo. Anal Chem 81(9):3630–3636. doi:10.1021/Ac900019k

    Article  CAS  Google Scholar 

  75. Deng S, Yetisen AK, Jiang K, Butt H (2014) Computational modelling of a graphene Fresnel lens on different substrates. RSC Adv 4(57):30050–30058. doi:10.1039/C4ra03991b

    Article  CAS  Google Scholar 

  76. Kong X-T, Butt H, Yetisen AK, Kangwanwatana C, Montelongo Y, Deng S, Cruz Vasconcellos Fd, Qasim MM, Wilkinson TD, Dai Q (2014) Enhanced reflection from inverse tapered nanocone arrays. Appl Phys Lett 105(5):053108. doi:10.1063/1.4892580

    Article  Google Scholar 

  77. Tsangarides CP, Yetisen AK, da Cruz Vasconcellos F, Montelongo Y, Qasim MM, Wilkinson TD, Lowe CR, Butt H (2014) Computational modelling and characterisation of nanoparticle-based tuneable photonic crystal sensors. RSC Adv 4(21):10454–10461. doi:10.1039/C3RA47984F

    Article  CAS  Google Scholar 

  78. Yetisen AK, Qasim MM, Nosheen S, Wilkinson TD, Lowe CR (2014) Pulsed laser writing of holographic nanosensors. J Mater Chem C 2(18):3569–3576. doi:10.1039/C3tc32507e

    Article  CAS  Google Scholar 

  79. Yetisen AK, Montelongo Y, Qasim MM, Butt H, Wilkinson TD, Monteiro MJ, Lowe CR, Yun SH (2014) Nanocrystal Bragg grating sensor for colorimetric detection of metal ions (under review)

    Google Scholar 

  80. Yetisen AK, Naydenova I, Vasconcellos FC, Blyth J, Lowe CR (2014) Holographic sensors: three-dimensional analyte-sensitive nanostructures and their applications. Chem Rev 114(20):10654–10696. doi:10.1021/cr500116a

    Article  CAS  Google Scholar 

  81. Akram MS, Daly R, Vasconcellos FC, Yetisen AK, Hutchings I, Hall EAH (2015) Applications of paper-based diagnostics. In: Castillo-Leon J, Svendsen WE (eds) Lab-on-a-chip devices and micro-total analysis systems. Springer, New York

    Google Scholar 

  82. Volpatti LR, Yetisen AK (2014) Commercialization of microfluidic devices. Trends Biotechnol 32(7):347–350. doi:10.1016/j.tibtech.2014.04.010

    Article  CAS  Google Scholar 

  83. Yetisen AK, Akram MS, Lowe CR (2013) Paper-based microfluidic point-of-care diagnostic devices. Lab Chip 13(12):2210–2251. doi:10.1039/c3lc50169h

    Article  CAS  Google Scholar 

  84. Yetisen AK, Volpatti LR (2014) Patent protection and licensing in microfluidics. Lab Chip 14(13):2217–2225. doi:10.1039/c4lc00399c

    Article  CAS  Google Scholar 

  85. Vasconcellos FD, Yetisen AK, Montelongo Y, Butt H, Grigore A, Davidson CAB, Blyth J, Monteiro MJ, Wilkinson TD, Lowe CR (2014) Printable surface holograms via laser ablation. ACS Photonics 1(6):489–495. doi:10.1021/Ph400149m

    Article  CAS  Google Scholar 

  86. Yetisen AK, Jiang L, Cooper JR, Qin Y, Palanivelu R, Zohar Y (2011) A microsystem-based assay for studying pollen tube guidance in plant reproduction. J Micromech Microeng 21(5):054018. doi:10.1088/0960-1317/21/5/054018

    Article  Google Scholar 

  87. Yetisen AK, Martinez-Hurtado JL, da Cruz Vasconcellos F, Simsekler MC, Akram MS, Lowe CR (2014) The regulation of mobile medical applications. Lab Chip 14(5):833–840. doi:10.1039/c3lc51235e

    Article  CAS  Google Scholar 

  88. Yetisen AK, Martinez-Hurtado JL, Garcia-Melendrez A, Vasconcellos FC, Lowe CR (2014) A smartphone algorithm with inter-phone repeatability for the analysis of colorimetric tests. Sens Actuators B 196:156–160. doi:10.1016/j.snb.2014.01.077

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Kemal Yetisen .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yetisen, A.K. (2015). Holographic Glucose Sensors. In: Holographic Sensors. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-13584-7_5

Download citation

Publish with us

Policies and ethics