Skip to main content

Cluster Synchronization in Boolean Neural Networks

  • Chapter
  • First Online:
Book cover Dynamics of Complex Autonomous Boolean Networks

Part of the book series: Springer Theses ((Springer Theses))

Abstract

This chapter focuses on the dynamics of spiking neural networks built with the Boolean neurons introduced in Chap. 8. I first introduce preceding work on the dynamics of spiking neural networks with realistic neuron models in Sect. 9.1 and discuss the master stability function and the tool of the greatest common divisor (GCD) in Sect. 9.2. Then, I present experimental results of the dynamics of networks of Boolean neurons in Sects. 9.3–9.7. Specifically, I show the occurrence of cluster synchronization, which is a network dynamics where the network can be separated into groups of synchronized dynamics, where nodes from different groups are not synchronized. This state is achieved in interconnected ring networks of Boolean neurons (Sect. 9.3), breaks down under certain scalings of internal timescales (Sects. 9.4 and 9.5), and can be controlled using a small number of nodes in the network (Sect. 9.6) (Results of this chapter are published in reference Rosin et al. Phys Rev Lett 110:104102, 2013.). These results are also reproduced with a model (Sect. 9.7).

The main contribution of this chapter are:

  • realizing experimentally networks of 32 Boolean neurons showing cluster synchronization on a logic chip;

  • pointing out limitations—specifically a breakdown—of a common network theory for cluster synchronization;

  • discovering of a control mechanism of cluster network dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This section is written in accordance with Ref. [38].

References

  1. D.P. Rosin, D. Rontani, D.J. Gauthier, E. Schöll, Control of synchronization patterns in neural-like Boolean networks. Phys. Rev. Lett. 110, 104102 (2013)

    Article  ADS  Google Scholar 

  2. W. Maass, C.M. Bishop, Pulsed Neural Networks (MIT Press, Cambridge, 2001)

    Google Scholar 

  3. E. Marder, D. Bucher, Central pattern generators and the control of rhythmic movements. Curr. Biol. 11, R986 (2001)

    Article  Google Scholar 

  4. P.S.G. Stein, S. Grillner, A. Selverston, D.G. Stuart, Neurons, Networks, and Motor Behavior (MIT Press, Cambridge, 1999)

    Google Scholar 

  5. A.I. Selverston, Invertebrate central pattern generator circuits. Philos. Trans. R. Soc. B 365, 2329 (2010)

    Article  Google Scholar 

  6. T. Harayama, S. Sunada, K. Yoshimura, J. Muramatsu, K.I. Arai, A. Uchida, P. Davis, Theory of fast nondeterministic physical random-bit generation with chaotic lasers. Phys. Rev. E 85, 046215 (2012)

    Article  ADS  Google Scholar 

  7. J.L. Ringo, R.W. Doty, S. Demeter, P.Y. Simard, Time is of the essence: a conjecture that hemispheric specialization arises from interhemispheric conduction delay. Cereb. Cortex 4, 331 (1994)

    Article  Google Scholar 

  8. E. Rossoni, Y. Chen, M. Ding, J. Feng, Stability of synchronous oscillations in a system of Hodgkin-Huxley neurons with delayed diffusive and pulsed coupling. Phys. Rev. E 71, 061904 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  9. C. Hauptmann, O.E. Omel’chenko, O.V. Popovych, Y.L. Maistrenko, P.A. Tass, Control of spatially patterned synchrony with multisite delayed feedback. Phys. Rev. E 76, 066209 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  10. C. Masoller, M.C. Torrent, J. García-Ojalvo, Interplay of subthreshold activity, time-delayed feedback, and noise on neuronal firing patterns. Phys. Rev. E 78, 041907 (2008)

    Article  ADS  Google Scholar 

  11. J. Friedrich, W. Kinzel, Dynamics of recurrent neural networks with delayed unreliable synapses: metastable clustering. J. Comput. Neurosci. 27, 65 (2009)

    Article  MathSciNet  Google Scholar 

  12. J. Lehnert, T. Dahms, P. Hövel, E. Schöll, Loss of synchronization in complex neural networks with delay. Europhys. Lett. 96, 60013 (2011)

    Article  ADS  Google Scholar 

  13. I. Kanter, E. Kopelowitz, R. Vardi, M. Zigzag, W. Kinzel, M. Abeles, D. Cohen, Nonlocal mechanism for cluster synchronization in neural circuits. Europhys. Lett. 93, 66001 (2011)

    Article  ADS  Google Scholar 

  14. P.R. Roelfsema, A.K. Engel, P. König, W. Singer, Visuomotor integration is associated with zero time-lag synchronization among cortical areas. Nature 385, 157 (1997)

    Article  ADS  Google Scholar 

  15. E. Rodriguez, N. George, J.P. Lachaux, J. Martinerie, B. Renault, F.J. Varela, Perception’s shadow: long-distance synchronization of human brain activity. Nature 397, 430 (1999)

    Article  ADS  Google Scholar 

  16. P. Fries, P.R. Roelfsema, A.K. Engel, P. König, W. Singer, Synchronization of oscillatory responses in visual cortex correlates with perception in interocular rivalry. Proc. Natl. Acad. Sci. U.S.A. 94, 12699 (1997)

    Article  ADS  Google Scholar 

  17. G. Schneider, D. Nikolić, Detection and assessment of near-zero delays in neuronal spiking activity. J. Neurosci. Methods 152, 97 (2006)

    Article  Google Scholar 

  18. F. Varela, J.P. Lachaux, E. Rodriguez, J. Martinerie, The brainweb: phase synchronization and large-scale integration. Nat. Rev. Neurosci. 2, 229 (2001)

    Article  Google Scholar 

  19. R. Vicente, L.L. Gollo, C.R. Mirasso, I. Fischer, P. Gordon, Dynamical relaying can yield zero time lag neuronal synchrony despite long conduction delays. Proc. Natl. Acad. Sci. U.S.A. 105, 17157 (2008)

    Article  ADS  Google Scholar 

  20. I. Fischer, R. Vicente, J.M. Buldú, M. Peil, C.R. Mirasso, M.C. Torrent, J. García-Ojalvo, Zero-lag long-range synchronization via dynamical relaying. Phys. Rev. Lett. 97, 123902 (2006)

    Article  ADS  Google Scholar 

  21. T. Dahms, J. Lehnert, E. Schöll, Cluster and group synchronization in delay-coupled networks. Phys. Rev. E 86, 016202 (2012)

    Article  ADS  Google Scholar 

  22. C. Masoller, M.C. Torrent, J. García-Ojalvo, Dynamics of globally delay-coupled neurons displaying subthreshold oscillations. Philos. Trans. R. Soc. A 367, 3255 (2009)

    Article  ADS  MATH  Google Scholar 

  23. D.V. Senthilkumar, J. Kurths, M. Lakshmanan, Inverse synchronizations in coupled time-delay systems with inhibitory coupling. Chaos 19, 023107 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  24. O.V. Popovych, S. Yanchuk, P.A. Tass, Delay- and coupling-induced firing patterns in oscillatory neural loops. Phys. Rev. Lett. 107, 228102 (2011)

    Article  ADS  Google Scholar 

  25. S.J. Schiff, Neural Control Engineering: The Emerging Intersection Between Control Theory and Neuroscience (MIT Press, Cambridge, 2011)

    Google Scholar 

  26. P.J. Uhlhaas, W. Singer, Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron 52, 155 (2006)

    Article  Google Scholar 

  27. R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, U. Alon, Network motifs: simple building blocks of complex networks. Science 298, 824 (2002)

    Article  ADS  Google Scholar 

  28. I. Kanter, M. Zigzag, A. Englert, F. Geissler, W. Kinzel, Synchronization of unidirectional time delay chaotic networks and the greatest common divisor. Europhys. Lett. 93, 60003 (2011)

    Article  ADS  Google Scholar 

  29. M. Nixon, M. Fridman, E. Ronen, A.A. Friesem, N. Davidson, I. Kanter, Controlling synchronization in large laser networks. Phys. Rev. Lett. 108, 214101 (2012)

    Article  ADS  Google Scholar 

  30. R. Vardi, A. Wallach, E. Kopelowitz, M. Abeles, S. Marom, I. Kanter, Synthetic reverberating activity patterns embedded in networks of cortical neurons. Europhys. Lett. 97, 066002 (2012)

    Article  Google Scholar 

  31. L.M. Pecora, T.L. Carroll, Master stability functions for synchronized coupled systems. Phys. Rev. Lett. 80, 2109 (1998)

    Article  ADS  Google Scholar 

  32. L.M. Pecora, T.L. Carroll, Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. W. Kinzel, A. Englert, G. Reents, M. Zigzag, I. Kanter, Synchronization of networks of chaotic units with time-delayed couplings. Phys. Rev. E 79, 056207 (2009)

    Article  ADS  Google Scholar 

  34. C.U. Choe, T. Dahms, P. Hövel, E. Schöll, Controlling synchrony by delay coupling in networks: from in-phase to splay and cluster states. Phys. Rev. E 81, 025205(R) (2010)

    Article  ADS  Google Scholar 

  35. V. Flunkert, S. Yanchuk, T. Dahms, E. Schöll, Synchronizing distant nodes: a universal classification of networks. Phys. Rev. Lett. 105, 254101 (2010)

    Article  ADS  Google Scholar 

  36. S. Heiligenthal, T. Jüngling, O. D’Huys, D.A. Arroyo-Almanza, M.C. Soriano, I. Fischer, I. Kanter, W. Kinzel, Strong and weak chaos in networks of semiconductor lasers with time-delayed couplings. Phys. Rev. E 88, 012902 (2013)

    Article  ADS  Google Scholar 

  37. F. Sorrentino, E. Ott, Network synchronization of groups. Phys. Rev. E 76, 056114 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  38. V. Flunkert, Delay-Coupled Complex Systems: And Applications to Lasers (Springer, Heidelberg, 2011)

    Book  Google Scholar 

  39. E. Kopelowitz, M. Abeles, D. Cohen, I. Kanter, Sensitivity of global network dynamics to local parameters versus motif structure in a cortexlike neuronal model. Phys. Rev. E 85, 051902 (2012)

    Article  ADS  Google Scholar 

  40. E. Schöll, G. Hiller, P. Hövel, M.A. Dahlem, Time-delayed feedback in neurosystems. Philos. Trans. R. Soc. A 367, 1079 (2009)

    Article  ADS  MATH  Google Scholar 

  41. R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445 (1961)

    Article  ADS  Google Scholar 

  42. J. Nagumo, S. Arimoto, S. Yoshizawa, An active pulse transmission line simulating nerve axon. Proc. IRE 50, 2061 (1962)

    Article  Google Scholar 

  43. G. Indiveri, B. Linares-Barranco, T.J. Hamilton, A. van Schaik, R. Etienne-Cummings, T. Delbruck, S.C. Liu, P. Dudek, P. Häfliger, S. Renaud, J. Schemmel, G. Cauwenberghs, J. Arthur, K. Hynna, F. Folowosele, S. Saighi, T. Serrano-Gotarredona, J. Wijekoon, Y. Wang, K. Boahen, Neuromorphic silicon neuron circuits. Front. Neurosci. 5, 73 (2011)

    Google Scholar 

  44. A. Hagerstrom, T.E. Murphy, R. Roy, P. Hövel, I. Omelchenko, E. Schöll, Experimental observation of chimeras in coupled-map lattices. Nat. Phys. 8, 658 (2012)

    Article  Google Scholar 

  45. M. Brede, Synchrony-optimized networks of non-identical Kuramoto oscillators. Phys. Lett. A 372, 2618 (2008)

    Article  ADS  MATH  Google Scholar 

  46. Y.-Y. Liu, J.-J. Slotine, A.-L. Barabási, Controllability of complex networks. Nature 473, 167 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David P. Rosin .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rosin, D.P. (2015). Cluster Synchronization in Boolean Neural Networks. In: Dynamics of Complex Autonomous Boolean Networks. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-13578-6_9

Download citation

Publish with us

Policies and ethics