Advertisement

Remineralizing Nanomaterials for Minimally Invasive Dentistry

  • Xu ZhangEmail author
  • Xuliang Deng
  • Yi Wu
Chapter

Abstract

Modern dentistry advocates early prevention of tooth decay and minimally invasive management of dental caries (minimally invasive dentistry, MID). Remineralization is an important therapeutic method in MID. At the moment, traditional remineralizing agents and methods are not adapted to the requirements of MID. Recent studies indicate that the development of nanomaterials, especially biomimetic ones, as remineralizing agents, provides novel remineralizing strategies for MID. Here, we review the progress of the development of remineralizing nanomaterials for different applications in MID. Some nanomaterials, including calcium fluoride, hydroxyapatite, and amorphous calcium phosphate in nanoscales, are incorporated into restorative materials such as composite resins, glass ionomers, and adhesive systems. These dental materials play a remineralizing role through releasing fluoride calcium and phosphate ions. Other nanomaterials composed of stabilizers and amorphous calcium phosphates (ACP), such as nanocomplexes of casein phosphopeptides (CPP) and ACP, polyacrylic acid (PAA)-ACP, polyaspartic acid (PASP)-ACP, and phosphorylated chitosan (Pchi)-ACP, provide a biomimetic remineralizing strategy by mimicking biomineralization processes, which could de novo form dental hard tissues through nonclassical crystallization pathways. However, it is unpractical to restore small clinically visible cavities with nanomaterials reviewed in this chapter at present. Most of the research covered in this chapter focuses primarily on laboratory tests. Future comprehensive research with respect to clinical applicability is required before employing remineralizing nanomaterials routinely in clinical practices.

Keywords

Minimally invasive dentistry Caries Nanomaterial Remineralization Biomimetic 

Abbreviations

ACP

Amorphous calcium phosphates

CaF2

Calcium fluoride

CMC

Carboxymethyl chitosan

CPP

Casein phosphopeptides

DMP1

Dentin matrix protein

DPP

Dentin phosphoprotein also known as DMP2 or phosphophoryn

EDX

Energy-dispersive X-ray spectroscopy

F

Fluoride

FAP

Fluorapatite Ca10(PO4)6F2

fβ-TCP

Funcionalized β-TCP

GTR

Guided tissue remineralization

HAP

Hydroxyapatite

IP

Ionic activity product

Ksp

The solubility product

MID

Minimally invasive dentistry

NaF

Sodium fluoride

nano-CaF2

CaF2 nanoparticle

NCPs

Noncollagenous proteins

n-FHA

Nanofluorohydroxyapatite

n-HAP

Nano-sized HAP

OCP

Octacalcium phosphate

PAA

Polyacrylic acid

PASP

Polyaspartic acid

Pchi

Phosphorylated chitosan

PEO

Ethylene oxide

PILP

Polymer-induced liquid-precursor

PVPA

Polyvinylphosphonic acid

R

Gas constant 8.314 J · K−1 mol−1

S

Supersaturation

SAED

Selected area electron diffraction

SEM

Scanning electron microscopy

STMP

Sodium trimetaphosphate

T

Absolute temperature

TEM

Transmission electron microscope

TPP

Sodium tripolyphosphate

β-TCP

Beta tricalcium phosphate Ca3(PO4)2

References

  1. 1.
    Featherstone JDB. The science and practice of caries prevention. J Am Dent Assoc. 2000;131:887–99.PubMedGoogle Scholar
  2. 2.
    Osborne JW, Summitt JB. Extension for prevention: is it relevant today? Am J Dent. 1998;11(4):189–96.PubMedGoogle Scholar
  3. 3.
    Christensen GJ. The advantages of minimally invasive dentistry. J Am Dent Assoc. 2005;136(11):1563–5.PubMedGoogle Scholar
  4. 4.
    White JM, Eakle WS. Rationale and treatment approach in minimally invasive dentistry. J Am Dent Assoc. 2000;131(9):1250–2.Google Scholar
  5. 5.
    Rainey JT. Understanding the applications of microdentistry. Compend Contin Educ Dent. 2001;2(11A):1018–25.Google Scholar
  6. 6.
    Ettinger RL. Restoring the ageing dentition: repair or replacement? Int Dent J. 1990;40(5):275–82.PubMedGoogle Scholar
  7. 7.
    Hewlett ER, Mount GJ. Glass ionomers in contemporary restorative dentistry – a clinical update. J Calif Dent Assoc. 2003;31(6):483–92.PubMedGoogle Scholar
  8. 8.
    Mount GJ, Ngo H. Minimal intervention: a new concept for operative dentistry. Quintessence Int. 2000;31(8):527–33.PubMedGoogle Scholar
  9. 9.
    Mount GJ, Hume WR. A new cavity classification. Aust Dent J. 1998;43(3):153–9.PubMedGoogle Scholar
  10. 10.
    Pitts NB. Are we ready to move from operative to non-operative/preventive treatment of dental caries in clinical practice? Caries Res. 2004;38(3):294–304.PubMedGoogle Scholar
  11. 11.
    Tyas MJ, Anusavice KJ, Frencken JE, Mount GJ. Minimal intervention dentistry – a review. FDI Commission Project 1–97. Int Dent J. 2000;50(1):1–12.PubMedGoogle Scholar
  12. 12.
    Levine RS, Rowles SL. Further studies on the remineralization of human carious in vitro. Arch Oral Biol. 1973;18:1351–6.Google Scholar
  13. 13.
    Daculsi G, Kerebel B, Le Cabellec MT, Kerebel LM. Qualitative and quantitative data on arrested caries in dentine. Caries Res. 1979;13:190–202.PubMedGoogle Scholar
  14. 14.
    Anne G, Arthur V. Phosphorylated proteins and control over apatite nucleation, crystal growth and inhibition. Chem Rev. 2008;108(11):4670–93.Google Scholar
  15. 15.
    Kawasaki K, Ruben J, Stokroos I, Takagi O, Arends J. The remineralization of EDTA-treated human dentine. Caries Res. 1999;33:275–80.PubMedGoogle Scholar
  16. 16.
    Zhang HL, Liu JS, Yao ZW, Yang J, Pan LZ, Chen ZQ. Biomimetic mineralization of electrospun poly(lactic-co-glycolic acid)/multi-walled carbon nanotubes composite scaffolds in vitro. Mater Lett. 2009;63:2313–6.Google Scholar
  17. 17.
    Cross KJ, Huq NL, Reynolds EC. Casein phosphopeptides in oral health-chemistry and clinical applications. Curr pharm des. 2007;13(8):793–800.PubMedGoogle Scholar
  18. 18.
    Tay FR, Pashley DH. Guided tissue remineralisation of partially demineralised human dentine. Biomaterials. 2008;29(8):1127–37.PubMedGoogle Scholar
  19. 19.
    Jones FH. Teeth and bones: applications of surface science to dental materials and related biomaterials. Surf Sci Rep. 2001;42:75–205.Google Scholar
  20. 20.
    Hermann E, Petros GK, Konstantinos DD, Oleg SP. Principles of demineralization: Modern strategies for the isolation of organic Frameworks Part II. Decalcification. Micron. 2009;40:169–93.Google Scholar
  21. 21.
    Simmelink JW. Histology of enamel. In: Avery JK, editor. Oral development and histology. New York: Thieme Medical Publishers Inc.; 1994.Google Scholar
  22. 22.
    Habelitz S, Marshall SJ, Marshall GW, Balooch M. Mechanical properties of human dental enamel on the nanometer scale. Arch Oral Biol. 2001;46:173–83.PubMedGoogle Scholar
  23. 23.
    Hansma P, Turner P, Drake B, Yurtsev E, Proctor A, Mathews P, Lulejian J, Randall C, Adams J, Jungmann R, Garza-de-Leon F, Fantner G, Mkrtchyan H, Pontin M, Weaver A, Brown MB, Sahar N, Rossello R, Kohn D. The bone diagnostic instrument II: indentation distance increase. Rev Sci Instrum. 2008;79:064303.PubMedCentralPubMedGoogle Scholar
  24. 24.
    Weiner S, Traub W. Bone structure: from angstroms to microns. FASEB J. 1992;6:879–85.PubMedGoogle Scholar
  25. 25.
    Moradian-Oldak J. Amelogenins: assembly, processing and control of crystal morphology. Matrix Biol. 2001;20(5):293–305.PubMedGoogle Scholar
  26. 26.
    Uskoković V, Bertassoni LE. Nanotechnology in dental sciences: moving towards a finer way of doing dentistry. Materials. 2010;3(3):1674–91.Google Scholar
  27. 27.
    Piesco NP. Histology of dentine. In: Avery JK, editor. Oral development and histology. New York: Thieme Medical Publishers Inc.; 1994.Google Scholar
  28. 28.
    Steve W, Arthur V, Elia B, Talmon A, Jerry WD, Boris S, Farida S. Peritubular dentin formation: crystal organization and the macromolecular constitutes in human teeth. J Struct Biol. 1999;126:27–41.Google Scholar
  29. 29.
    Johanssen E. Microstructure of enamel and dentine. J Dent Res. 1964;43:1007–9.Google Scholar
  30. 30.
    Veis A. A window on biomineralization. Science. 2005;37:1419–20.Google Scholar
  31. 31.
    Arsenault AL. Crystal-collagen relationships in calcified turkey leg tendons visualized by selected-area dark field electron microscopy. Calcif Tissue Int. 1988;43:202–12.PubMedGoogle Scholar
  32. 32.
    Traub W, Arad T, Weiner S. Threedimensional ordered distribution of crystals in turkey tendon collagen fibers. Proc Natl Acad Sci U S A. 1989;86:9822–6.PubMedCentralPubMedGoogle Scholar
  33. 33.
    Landis WJ, Hodgens KJ, Arena J, Song MJ, McEwen BF. Structural relations between collagen and mineral in bone as determined by high voltage electron microscopic tomography. Microsc Res Tech. 1996;33:192–202.PubMedGoogle Scholar
  34. 34.
    Selvig KA. Ultrastructural changes in human dentine exposed to a weak acid. Archiv Oral Biol. 1968;13:719–34.Google Scholar
  35. 35.
    Tveit AB, Selvig KA. In vitro recalcification of dentine demineralized by citric acid. Scand J Dent Res. 1981;89:38–42.PubMedGoogle Scholar
  36. 36.
    Jäger I, Fratzl P. Mineralized collagen fibrils: a mechanical model with a staggered arrangement of mineral particles. Biophys J. 2000;79:1737–46.PubMedCentralPubMedGoogle Scholar
  37. 37.
    Murdoch-Kinch CA, McLean ME. Minimally invasive dentistry. J Am Dent Assoc. 2003;134(1):87–95.PubMedGoogle Scholar
  38. 38.
    ten Cate JM. Remineralization of caries lesions extend into dentine. J Dent Res. 2001;80:1407–11.PubMedGoogle Scholar
  39. 39.
    Sakoolnamarka R, Burrow MF, Kubo S, Tyas MJ. Morphological study of demineralized dentine after caries removal using two different methods. Aust Dent J. 2002;47(2):116–22.PubMedGoogle Scholar
  40. 40.
    Arnold WH, Konopka S, Kriwalsky MS, Gaengler P. Morphological analysis and chemical content of natural dentin carious lesion zones. Ann Anat. 2003;185:419–24.PubMedGoogle Scholar
  41. 41.
    Clarkson BH, Feagin FF, McCurdy SP, Sheetz JH, Speirs R. Effects of phosphoprotein moieties on the remineralization of human root caries. Caries Res. 1991;25:166–73.PubMedGoogle Scholar
  42. 42.
    McIntyre JM, Featherstone JD, Fu J. Studies of dental root surface caries. 1: comparison of natural and artificial root caries lesions. Aust Dent J. 2000;45:24–30.PubMedGoogle Scholar
  43. 43.
    Nyvad B, Rejerskov O. Active root surface caries converted into inactive caries as a response to oral hygiene. Scand J Dent Res. 1986;94:281–4.PubMedGoogle Scholar
  44. 44.
    ten Cate JM. Remineralization of deep enamel dentine caries lesions. Aust Dent J. 2008;53:281–5.PubMedGoogle Scholar
  45. 45.
    Alauddin SS, Greenspan D, Anusavice KJ, Mecholsky J. In vitro human enamel remineralization using bioactive glass containing dentifrice. J Dent Res. 2005;84:2546.Google Scholar
  46. 46.
    Cheng L, Weir MD, Xu HHK, Kraigsley AM, Lin NJ, Lin-Gibson S, Zhou X. Antibacterial and physical properties of calcium–phosphate and calcium–fluoride nanocomposites with chlorhexidine. Dent Mater. 2012;28(5):573–83.PubMedCentralPubMedGoogle Scholar
  47. 47.
    Wefel JS. Effects of fluoride on caries development and progression using intra-oral models. J Dent Res. 1990;69:626.PubMedGoogle Scholar
  48. 48.
    Ten Cate JM, Featherstone JDB. Mechanistic aspects of the interactions between fluoride and dental enamel. Crit Rev Oral Biol Med. 1991;2(3):283–96.PubMedGoogle Scholar
  49. 49.
    Stoodley P, Wefel J, Gieseke A, von Ohle C. Biofilm plaque and hydrodynamic effects on mass transfer, fluoride delivery and caries. J Am Dent Assoc. 2008;139(9):1182–90.PubMedGoogle Scholar
  50. 50.
    Kirsten GA, Takahashi MK, Rached RN, Giannini M, Souza EM. Microhardness of dentin underneath fluoride-releasing adhesive systems subjected to cariogenic challenge and fluoride therapy. J Dent. 2010;38(6):460–8.PubMedGoogle Scholar
  51. 51.
    Cenci MS, Tenuta LMA, Pereira-Cenci T, Del Bel Cury AA, Ten Cate JM, Cury JA. Effect of microleakage and fluoride on enamel-dentine demineralization around restorations. Caries Res. 2008;42(5):369–79.PubMedGoogle Scholar
  52. 52.
    Mousavinasab SM, Meyers I. Fluoride release and uptake by glass ionomer cements, compomers and giomers. Res J Biol Sci. 2009;4(5):609–16.Google Scholar
  53. 53.
    Xu HHK, Moreau JL, Sun L, Chow LC. Strength and fluoride release characteristics of a calcium fluoride based dental nanocomposite. Biomaterials. 2008;29(32):4261–7.PubMedCentralPubMedGoogle Scholar
  54. 54.
    Xu HHK, Moreau JL, Sun L, Chow LC. Novel CaF2 nanocomposite with high strength and fluoride ion release. J Dent Res. 2010;89(7):739–45.PubMedCentralPubMedGoogle Scholar
  55. 55.
    Sun L, Chow LC. Preparation and properties of nano-sized calcium fluoride for dental applications. Dent Mater. 2008;24(1):111–6.PubMedCentralPubMedGoogle Scholar
  56. 56.
    Weir MD, Moreau JL, Levine ED, Strassler HE, Chow LC, Xu HH. Nanocomposite containing CaF2 nanoparticles: thermal cycling, wear and long-term water-aging. Dent Mater. 2012;28(6):642–52.PubMedCentralPubMedGoogle Scholar
  57. 57.
    Zhou H, Bhaduri S. Novel microwave synthesis of amorphous calcium phosphate nanospheres. J Biomed Mater Res B Appl Biomater. 2012;100(4):1142–50.PubMedGoogle Scholar
  58. 58.
    Sun L, Chow LC, Frukhtbeyn SA, Bonevich JE. Preparation and properties of nanoparticles of calcium phosphates with various Ca/P ratios. J Res Natl Inst Stan. 2010;115(4):243.Google Scholar
  59. 59.
    Xu HHK, Moreau JL, Sun L, Chow LC. Nanocomposite containing amorphous calcium phosphate nanoparticles for caries inhibition. Dent Mater. 2011;27(8):762–9.PubMedCentralPubMedGoogle Scholar
  60. 60.
    Karlinsey RL, Pfarrer AM. Fluoride plus functionalized β-TCP a promising combination for robust remineralization. Advan Dent Res. 2012;24(2):48–52.Google Scholar
  61. 61.
    Karlinsey RL, Mackey AC. Solid-state preparation and dental application of an organically modified calcium phosphate. J Mater Sci. 2009;44(1):346–9.Google Scholar
  62. 62.
    Ramay HRR, Zhang M. Biphasic calcium phosphate nanocomposite porous scaffolds for load-bearing bone tissue engineering. Biomaterials. 2004;25(21):5171–80.PubMedGoogle Scholar
  63. 63.
    Roveri N, Rimondini L, Palazzo B, Iafisco M, Battistella E, Foltran I, Lelli M. Synthetic biomimetic carbonate-hydroxyapatite nanocrystals for enamel remineralization. Advan Mater Res. 2008;47:821–4.Google Scholar
  64. 64.
    Li L, Pan H, Tao J, Xu X, Mao C, Gu X, Tang R. Repair of enamel by using hydroxyapatite nanoparticles as the building blocks. J Mater Chem. 2008;18(34):4079–84.Google Scholar
  65. 65.
    Cai Y, Liu Y, Yan W, Hu Q, Tao J, Zhang M, Tang R. Role of hydroxyapatite nanoparticle size in bone cell proliferation. J Mater Chem. 2007;17(36):3780–7.Google Scholar
  66. 66.
    Yamagishi K, Onuma K, Suzuki T, Okada F, Tagami J, Otsuki M, Senawangse P. Materials chemistry: a synthetic enamel for rapid tooth repair. Nature. 2005;433(7028):819.PubMedGoogle Scholar
  67. 67.
    Moshaverinia A, Roohpour N, Chee WWL, Schricker SR. A review of powder modifications in conventional glass-ionomer dental cements. J Mater Chem. 2011;21(5):1319–28.Google Scholar
  68. 68.
    Zhang H, Darvell BW. Mechanical properties of hydroxyapatite whisker-reinforced bis-GMA-based resin composites. Dent Mater. 2012;28(8):824–30.PubMedGoogle Scholar
  69. 69.
    Goenka S, Balu R, Sampath Kumar TS. Effects of nanocrystalline calcium deficient hydroxyapatite incorporation in glass ionomer cements. J Mech Behav Biomed Mater. 2012;7:69–76.PubMedGoogle Scholar
  70. 70.
    Wang QS, Wang Y, Li R, Zhao MM, Sun JJ, Gao Y. Effects of light-initiation agent on mechanical properties of light-cured nano-hydroxyapatite composite for dental restoration. Appl Mech Mater. 2012;138:1012–6.Google Scholar
  71. 71.
    Lee JJ, Lee YK, Choi BJ, Lee JH, Choi HJ, Son HK, Kim SO. Physical properties of resin-reinforced glass ionomer cement modified with micro and nano-hydroxyapatite. J Nanosci Nanotechnol. 2010;10(8):5270–6.PubMedGoogle Scholar
  72. 72.
    Moshaverinia A, Ansari S, Movasaghi Z, Billington RW, Darr JA, Rehman IU. Modification of conventional glass-ionomer cements with N vinylpyrrolidone containing polyacids, nano-hydroxy and fluoroapatite to improve mechanical properties. Dent Mater. 2008;24(10):1381–90.PubMedGoogle Scholar
  73. 73.
    Moshaverinia A, Ansari S, Moshaverinia M, Roohpour N, Darr JA, Rehman I. Effects of incorporation of hydroxyapatite and fluoroapatite nanobioceramics into conventional glass ionomer cements (GIC). Acta Biomater. 2008;4(2):432–40.PubMedGoogle Scholar
  74. 74.
    Lin J, Zhu J, Gu X, Wen W, Li Q, Fischer-Brandies H, Mehl C. Effects of incorporation of nano-fluorapatite or nano-fluorohydroxyapatite on a resin-modified glass ionomer cement. Acta Biomater. 2011;7(3):1346–53.PubMedGoogle Scholar
  75. 75.
    Zhang JX, Meng XC, Li XY, Lv KL. Remineralization effect of the nano-HA toothpaste on artificial caries. Key Eng Mater. 2007;330:267–70.Google Scholar
  76. 76.
    Wang L, Guan X, Yin H, Moradian-Oldak J, Nancollas GH. Mimicking the self-organized microstructure of tooth enamel. J Phys Chem C. 2008;112(15):5892–9.Google Scholar
  77. 77.
    Roveri N, Palazzo B, Iafisco M. The role of biomimetism in developing nanostructured inorganic matrices for drug delivery. Expert Opin Drug Deliv. 2008;5(8):861–77.PubMedGoogle Scholar
  78. 78.
    Wang L, Guan X, Du C, Moradian-Oldak J, Nancollas GH. Amelogenin promotes the formation of elongated apatite microstructures in a controlled crystallization system. J Phys Chem C. 2007;111(17):6398–404.Google Scholar
  79. 79.
    Fan Y, Sun Z, Wang R, Abbott C, Moradian-Oldak J. Enamel inspired nanocomposite fabrication through amelogenin supramolecular assembly. Biomaterials. 2007;28(19):3034–42.PubMedCentralPubMedGoogle Scholar
  80. 80.
    Fan Y, Sun Z, Moradian-Oldak J. Controlled remineralization of enamel in the presence of amelogenin and fluoride. Biomaterials. 2009;30(4):478–83.PubMedCentralPubMedGoogle Scholar
  81. 81.
    Tao J, Pan H, Zeng Y, Xu X, Tang R. Roles of amorphous calcium phosphate and biological additives in the assembly of hydroxyapatite nanoparticles. J Phys Chem B. 2007;111(47):13410–8.PubMedGoogle Scholar
  82. 82.
    Kirkham J, Firth A, Vernals D, Boden N, Robinson C, Shore RC, Aggeli A. Self-assembling peptide scaffolds promote enamel remineralization. J Dent Res. 2007;86(5):426–30.PubMedGoogle Scholar
  83. 83.
    Fowler CE, Li M, Mann S, Margolis HC. Influence of surfactant assembly on the formation of calcium phosphate materials—a model for dental enamel formation. J Mater Chem. 2005;15(32):3317–25.Google Scholar
  84. 84.
    Chen H, Clarkson BH, Sun K, Mansfield JF. Self-assembly of synthetic hydroxyapatite nanorods into an enamel prism-like structure. J Coll Interface Sci. 2005;288(1):97–103.Google Scholar
  85. 85.
    Palazzo B, Walsh D, Iafisco M, Foresti E, Bertinetti L, Martra G, Roveri N. Amino acid synergetic effect on structure, morphology and surface properties of biomimetic apatite nanocrystals. Acta Biomater. 2009;5(4):1241–52.PubMedGoogle Scholar
  86. 86.
    Iijima M, Moradian-Oldak J. Control of apatite crystal growth in a fluoride containing amelogenin-rich matrix. Biomaterials. 2005;26(13):1595–603.PubMedGoogle Scholar
  87. 87.
    He G, Dahl T, Veis A, George A. Dentin matrix protein 1 initiates hydroxyapatite formation in vitro. Connect Tissue Res. 2003;44(1):240–5.PubMedGoogle Scholar
  88. 88.
    Veis A. A window on biomineralization. Science. 2005;307(5714):1419–20.PubMedGoogle Scholar
  89. 89.
    Boskey AL. Amorphous calcium phosphate: the contention of bone. J Dent Res. 1997;76(8):1433–6.PubMedGoogle Scholar
  90. 90.
    Yan-Bao L, Dong-Xu L, Wen-Jian W. Amorphous calcium phosphates and its biomedical application. J Inorg Mater. 2007;22(5):775–82.Google Scholar
  91. 91.
    Sun W, Zhang F, Guo J, Wu J, Wu W. Effects of amorphous calcium phosphate on periodontal ligament cell adhesion and proliferation in vitro. J Med Biol Eng. 2008;28(2):107–10.Google Scholar
  92. 92.
    Li Y, Kong F, Weng W. Preparation and characterization of novel biphasic calcium phosphate powders (α‐TCP/HA) derived from carbonated amorphous calcium phosphates. J Biomed Mater Res B Appl Biomater. 2009;89(2):508–17.PubMedGoogle Scholar
  93. 93.
    Dorozhkin SV. Calcium orthophosphates as bioceramics: state of the art. J Funct Biomater. 2010;1(1):22–107.PubMedCentralPubMedGoogle Scholar
  94. 94.
    Melo MAS, Weir MD, Rodrigues LKA, Xu HH. Novel calcium phosphate nanocomposite with caries-inhibition in a human in situ model. Dent Mater. 2013;29:231–40.PubMedCentralPubMedGoogle Scholar
  95. 95.
    Jie Z, Yu L, Wei-bin S, Hai Z. Amorphous calcium phosphate and its application in dentistry. Chem Cent J. 2011;5:40.Google Scholar
  96. 96.
    Skrtic D, Antonucci JM, Eanes ED. Effect of the monomer and filler systems on the remineralizing potential of bioactive dental composites based on amorphous calcium phosphate. Polym Advan Technol. 2001;12(6):369–79.Google Scholar
  97. 97.
    O’donnell JNR, Skrtic D, Antonucci JM. Amorphous calcium phosphate composites with improved mechanical properties1. J Bioact Compat Pol. 2006;21(3):169–84.Google Scholar
  98. 98.
    Schumacher GE, Antonucci JM, O’Donnell JNR, Skrtic D. The use of amorphous calcium phosphate composites as bioactive basing materials: their effect on the strength of the composite/adhesive/dentin bond. J Am Dent Assoc. 2007;138(11):1476.PubMedCentralPubMedGoogle Scholar
  99. 99.
    Antonucci JM, Liu DW, Skrtic D. Amorphous calcium phosphate based composites: effect of surfactants and poly (ethylene oxide) on filler and composite properties. J Disper Sci Technol. 2007;28(5):819–24.Google Scholar
  100. 100.
    Eanes ED. Amorphous calcium phosphate: thermodynamic and kinetic considerations. In: Amjad Z editor. Calcium Phosphates in Biological and Industrial Systems. Springer International Publishing AG, Part of Springer Science+Business Media. 1998:21–39.Google Scholar
  101. 101.
    Liu Y, Kim YK, Dai L, Li N, Khan SO, Pashley DH, Tay FR. Hierarchical and non-hierarchical mineralisation of collagen. Biomaterials. 2011;32(5):1291–300.PubMedCentralPubMedGoogle Scholar
  102. 102.
    Liu Y, Li N, Qi Y, Niu LN, Elshafiy S, Mao J, Tay FR. The use of sodium trimetaphosphate as a biomimetic analog of matrix phosphoproteins for remineralization of artificial caries-like dentin. Dent Mater. 2011;27(5):465–77.PubMedCentralPubMedGoogle Scholar
  103. 103.
    Burwell AK, Thula-Mata T, Gower LB, Habeliz S, Kurylo M, Ho SP, Marshall GW. Functional remineralization of dentin lesions using polymer-induced liquid-precursor process. PLoS One. 2012;7(6):e38852.PubMedCentralPubMedGoogle Scholar
  104. 104.
    Cross KJ, Huq NL, Reynolds EC. Anticariogenic peptides. In: Mine Y, Shahidi F, editors. Nutraceutical proteins and peptides in health and disease. Hoboken: CRC Press; 2005. p. 335–51.Google Scholar
  105. 105.
    Cross KJ, Huq NL, Palamara J, Perich J, Reynolds EC. Physicochemical characterization of casein phosphopeptide-amorphous calcium phosphate nanocomplexes. J Biol Chem. 2005;280:15362–9.PubMedGoogle Scholar
  106. 106.
    Rose RK. Binding characteristics of Streptococcus mutans for calcium and casein phosphopeptide. Caries Res. 2000;34:427–31.PubMedGoogle Scholar
  107. 107.
    Rose RK. Effects of an anticariogenic casein phosphopeptide on calcium diffusion in streptococcal model dental plaques. Arch Oral Biol. 2000;45:569–75.PubMedGoogle Scholar
  108. 108.
    Reynolds EC. Remineralization of enamel subsurface lesions by casein phosphopeptide-stabilized calcium phosphate solutions. J Dent Res. 1997;76:1587–95.PubMedGoogle Scholar
  109. 109.
    Reynolds EC. Calcium phosphate-based remineralization systems: scientific evidence? Aus Dent J. 2008;53:268–73.Google Scholar
  110. 110.
    Iijima Y, Cai F, Shen P, Walker G, Reynolds C, Reynolds EC. Acid resistance of enamel subsurface lesions remineralized by a sugar-free chewing gum containing casein phosphopeptideamorphous calcium phosphate. Caries Res. 2004;38:551–6.PubMedGoogle Scholar
  111. 111.
    Beniash E, Metzler RA, Lam RS, Gilbert PU. Transient amorphous calcium phosphate in forming enamel. J Struct Biol. 2009;166:133–43.PubMedCentralPubMedGoogle Scholar
  112. 112.
    Lowenstam HA, Weiner S. Transformation of amorphous calcium phosphate to crystalline dahillite in the radular teeth of chitons. Science. 1985;227:51–3.PubMedGoogle Scholar
  113. 113.
    Mahamid J, Sharir A, Addadi L, Weiner S. Amorphous calcium phosphate is a major component of the forming fin bones of zebrafish: Indications for an amorphous precursor phase. Proc Natl Acad Sci. 2008;105:12748–53.PubMedCentralPubMedGoogle Scholar
  114. 114.
    Combes C, Rey C. Amorphous calcium phosphates: synthesis, properties and uses in biomaterials. Acta Biomater. 2010;6:3362–78.PubMedGoogle Scholar
  115. 115.
    Pan HH, Liu XY, Tang RK, Xu HY. Mystery of the transformation from amorphous calcium phosphate to hydroxyapatite. Chem Comm. 2010;46:7415–20.PubMedGoogle Scholar
  116. 116.
    George A, Sabsay B, Simonian PA, Veis A. Characterization of a novel dentin matrix acidic phosphoprotein. Implications for induction of biomineralization. J Biol Chem. 1993;268:12624–30.PubMedGoogle Scholar
  117. 117.
    Hunter GK, Hauschka PV, Poole AR, Robsenberg LC, Goldberg HA. Nucleation and inhibition of hydroxyapatite formation by mineralized tissue proteins. Biochem J. 1996;317:59–64.PubMedCentralPubMedGoogle Scholar
  118. 118.
    He G, Ramachandran A, Dahl T, George S, Schultz D, Cookson D, George A. Phosphorylation of phosphophoryn is crucial for its function as a mediator of biomineralization. J Biol Chem. 2005;280(39):33109–14.PubMedGoogle Scholar
  119. 119.
    Liou SC, Chen SY, Liu DM. Manipulation of nanoneedle and nanosphere apatite/poly(acrylic acid) nanocomposites. J Biomed Mater Res B Appl Biomater. 2005;73:117–22.PubMedGoogle Scholar
  120. 120.
    Olszta MJ, Odom DJ, Douglas EP, Gower LB. A new paradigm for biomineral formation: mineralization via an amorphous liquid-phase precursor. Connect Tissue Res. 2003;44 Suppl 1:326–34.PubMedGoogle Scholar
  121. 121.
    Gower LB, Olszta MJ, Douglas EP, Munisamy S, Wheeler DL. Biomimetic organic/inorganic composites, processes for their production, and methods of use. US patent application 20060204581, 2006.Google Scholar
  122. 122.
    Niederberger M, Cölfen H. Oriented attachment and mesocrystals: non-classical crystallization mechanisms based on nanoparticle assembly. Phys Chem Chem Phys. 2006;8:3271–87.PubMedGoogle Scholar
  123. 123.
    Saito T, Yamauchi M, Crenshaw MA. Apatite induction by insoluble dentin collagen. J Bone Miner Res. 1998;13:265–70.PubMedGoogle Scholar
  124. 124.
    Kinney JH, Habelitz S, Marshall SJ, Marshall GW. The importance of intrafibrillar mineralization of collagen on the mechanical properties of dentin. J Dent Res. 2003;82:957–61.PubMedGoogle Scholar
  125. 125.
    Dai L, Liu Y, Salameh Z, Khan S, Mao J, Pashley DH, Tay FR. Can caries-affected dentin be completely remineralized by guided tissue remineralization? Dent Hypotheses. 2011;2(2):74.PubMedCentralPubMedGoogle Scholar
  126. 126.
    Rinaudo M. Chitin and chitosan: properties and applications. Prog Polym Sci. 2006;31:603–32.Google Scholar
  127. 127.
    Malette W, Quigley H. Adickes E. In: Muzzarelli RAA, Jeuniaux C, Gooday GW, editors. Chitin in nature and technology. New York: Plenum Press; 1986. p. 435–42.Google Scholar
  128. 128.
    Huang M, Fang Y. Preparation, characterization, and properties of chitosan-g-poly(vinyl alcohol) copolymer. Biopolymers. 2006;81:160–6.PubMedGoogle Scholar
  129. 129.
    Sakairi N, Shirai A, Miyazaki S, Tashiro H, Tsuji Y, Kawahara H, Yoshida T, Tokura S. Synthesis and properties of chitin phosphate. Kobunshi Ronbunshu. 1998;55:212–6.Google Scholar
  130. 130.
    Jayakumara R, Rajkumarb M, Freitas H, Selvamuruganc N, Nair SV, Furuikec T, Tamuraa H. Preparation, characterization, bioactive and metal uptake studies of alginate/phosphorylated chitin blend films. Int J Biol Macromol. 2009;44:107–11.Google Scholar
  131. 131.
    Wang XH, Zhu Y, Feng QL, Cui FZ, Ma JB. Responses of osteo- and fibroblast cells to phosphorylated chitin. Bioact Compat Polym. 2003;18:135–46.Google Scholar
  132. 132.
    Wang X, Ma J, Wang Y, He B. Bone repair in radii and tibias of rabbits with phosphorylated chitosan reinforced calcium phosphate cements. Biomaterials. 2002;23:4167–76.PubMedGoogle Scholar
  133. 133.
    Wang X, Ma J, Feng QL, Cui FZ. Skeletal repair in rabbits with calcium phosphate cements incorporated phosphorylated chitin. Biomaterials. 2002;23:459–4600.Google Scholar
  134. 134.
    Abarrategi A, Moreno-Vicente C, Ramos V, Aranaz I, Sanz Casado JV, López-Lacomba JL. Improvement of porous beta-TCP scaffolds with rhBMP-2 chitosan carrier film for bone tissue application. Tissue Eng Part A. 2008;14(8):1305–19.PubMedGoogle Scholar
  135. 135.
    Weir MD, Xu HH. Osteoblastic induction on calcium phosphate cement-chitosan constructs for bone tissue engineering. J Biomed Mater Res A. 2010;94(1):223–33.PubMedCentralPubMedGoogle Scholar
  136. 136.
    Jayakumar R, Nwe N, Tokura S, Tamura H. Sulfated chitin and chitosan as novel biomaterials. Int J Biol Macromol. 2007;40:175–81.PubMedGoogle Scholar
  137. 137.
    Zhang X, Yang P, Yang WT, Chen JC. The bio-inspired approach to controllable biomimetic synthesis of silver nanoparticles in organic matrix of chitosan and silver-binding peptide (NPSSLFRYLPSD). Mater Sci Eng C Biomim Mater Sens Syst. 2008;28:237–42.Google Scholar
  138. 138.
    Xu Z, Neoh KG, Lin CC, Kishen A. Remineralization of partially demineralized dentine substrate using phosphorylated chitosan. J Biomed Mater Res B Appl Mater. 2011;98B(1):150–9.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of EndodonticsSchool and Hospital of Stomatology, Tianjin Medical UniversityHeping District, TianjinPeople’s Republic of China
  2. 2.Geriatric DentistyPeking University School and Hospital of StomatologyBeijingChina

Personalised recommendations