Advertisement

Nanoparticles in Restorative Materials

  • Grace M. De SouzaEmail author
Chapter

Abstract

Nanotechnology has made significant progress in the past 20 years. Particles as small as 3 nm are being employed in restorative materials in attempts to improve their functional performance. There are currently many commercial brands with different particle size distribution; some of them are termed nanohybrids, where nanoparticles (minimum size ~3 nm) are associated with particles larger than 100 nm. Materials called nanofill contain nanoparticles with a more even distribution (smaller than 100 nm). Amongst the particles used, some of them are applied to enhance the material’s bioactivity, which may control or reduce viable bacterial count on the tooth surface or on the tooth–restoration interface. Some examples of those particles are titanium dioxide (TiO2), chlorhexedine-hexametaphosphate (CHX-HMP) and silver (Ag). Nanofillers are also used to improve the material’s clinical performance, by either strengthening the restoration or enhancing its aesthetic characteristics, such as translucency and polishability. Zirconium dioxide (ZrO2), colloidal platinum and zirconia–silica nanoparticles are examples in this category of nanofillers. Amongst the desirable characteristics of nano-based restorative materials are higher mechanical properties; enhanced ion release of glass ionomer cements; development of bioactive adhesives, to provide antibacterial effect within the restoration or at the tooth–restoration interface; polishability and stable optical properties of resin composites; phase stability of high–crystalline content ceramics and lesser chipping of dental porcelains. The main goal of this chapter is to provide an overview of the advancements in the field of restorative materials with the application of nanoparticles. Nonetheless, it is worth mentioning that any progress reported here is very novel and has not been fully investigated, and more investigations are required before new restorative materials can be widely disseminated as a permanent solution to a given clinical problem.

Keywords

Ion release Nanocomposites Nanohybrid composites Clusters Homogeneous distribution Bioactive particles Smoothness Longevity Phase stability 

Abbreviations

4-META/MMA-TBB

4-methacryloxyethyl trimellitate anhydride in methyl methacrylate initiated by tri-n-butyl borane

ACP

Amorphous calcium phosphate

Ag

Silver

Al2O3

Aluminum trioxide or alumina

AlF3

Aluminum fluoride

BaSO4

Barium sulfate

Bis-EMA

Ethoxylated bisphenol A glycol dimethacrylate

Bis-GMA

Bisphenol-glycidil methacrylate

Bz

Benzoate

Ca/P

Calcium phosphate

CAD-CAM

Computer-aided design/Computer-aided manufacturing

CDHA

Calcium-deficient hydroxyapatite

CeO2

Cerium dioxide

Ce-TZP

Cerium-stabilized tetragonal zirconia polycrystal

CFU

Colony forming units

CHX

Chlorhexedine

CHX-HMP

Chlorhexedine-hexametaphosphate

CPN

Colloidal platinum nanoparticles

CQ

Camphorquinone

DEB

Dentin enamel body

DNA

Deoxyribonucleic acid

F

Fluoride

FA

Fluorapatite

FeCl3

Ferric chloride

FSS

Filtek Supreme Standard

FST

Filtek Supreme Translucent

GA

Glyoxylic acid

GIC

Glass ionomer cement

HA

Hydroxyapatite

HEMA

2-hydroxyethyl methacrylate

HNT

Halloysite nanotubes

MgO

Magnesium oxide

MMP

Matrix-metalloproteinase

MOD

Mesio occlusal distal

MPTMS

3-methacryloxypropyl trimethoxy silane

N

Zinc

N

Newton

nACP

Nano-amorphous calcium phosphate

nAg

Nano-silver

nCAF2

Calcium fluoride nanoparticles

n-CDHA

Nano calcium-deficient hydroxyapatite

nDCPA

Nano-dicalcium phosphate anhydrous

nHA

Nano-hydroxyapatite

nm

Nanometer

NVP

N-vinylpyrrolidone

PMAA

Polymetracrylic acid

PO4

Phosphate

ppm

Parts per million

QADM

Quaternary ammonium dimethacrylate

QA-PEI

Quaternary ammonium polyethylenimine

SEM

Scanning electron microscopy

TEGDMA

Trithylene glycol dimethacrylate

TiO2

Titanium dioxide

UDMA

Urethane-dimethacrylate

wt%

By weight percent

YbF3

Ytterbium fluoride

YSZ

Ytrium-stabilized zirconia

ZnO

Zinc oxide

ZrO2

Zirconium dioxide or zirconia

ZTA

Zirconia toughened alumina

μm

Micrometer

μm/m.K

Micrometer per meter Kelvin

References

  1. 1.
    Mohamed Hamouda I. Current perspectives of nanoparticles in medical and dental biomaterials. J Biomed Res. 2012;26(3):143–51.PubMedCentralPubMedGoogle Scholar
  2. 2.
    Shetty NJ, Swati P, David K. Nanorobots: future in dentistry. Saudi Dent J. 2013;25(2):49–52.PubMedCentralPubMedGoogle Scholar
  3. 3.
    Mitra SB, Wu D, Holmes BN. An application of nanotechnology in advanced dental materials. J Am Dent Assoc. 2003;134(10):1382–90.PubMedGoogle Scholar
  4. 4.
    Allaker RP. The use of nanoparticles to control oral biofilm formation. J Dent Res. 2010;89(11):​1175–86.PubMedGoogle Scholar
  5. 5.
    Monteiro DR, Gorup LF, Takamiya AS, Ruvollo-Filho AC, de Camargo ER, Barbosa DB. The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. Int J Antimicrob Agents. 2009;​34(2):​103–10.PubMedGoogle Scholar
  6. 6.
    Ahn SJ, Lee SJ, Kook JK, Lim BS. Experimental antimicrobial orthodontic adhesives using nanofillers and silver nanoparticles. Dent Mater Off Publ AcadDent Mater. 2009;25(2):206–13.Google Scholar
  7. 7.
    Saunders SA. Current practicality of nanotechnology in dentistry. Part 1: focus on nanocomposite restoratives and biomimetics. Clin Cosmet Investig Dent. 2009;1:47–61.PubMedCentralPubMedGoogle Scholar
  8. 8.
    Stoimenov PK, Rosalyn L, Marchin GL, Klabunde KJ. Metal oxide nanoparticles as bactericidal agents. Langmuir. 2002;18:6679–86.Google Scholar
  9. 9.
    Rezaei-Zarchi S, Javed A, Ghani MJ, Soufian S, Firouzabadi FB, et al. A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids Surf B Biointerfaces. 2010;57:97–101.Google Scholar
  10. 10.
    Prentice LH, Tyas MJ, Burrow MF. The effect of ytterbium fluoride and barium sulphate nanoparticles on the reactivity and strength of a glass-ionomer cement. Dent Mater Off Publ AcadDent Mater. 2006;​22(8):746–51.Google Scholar
  11. 11.
    Lu X, Xia Y, Liu M, Qian Y, Zhou X, Gu N, et al. Improved performance of diatomite-based dental nanocomposite ceramics using layer-by-layer assembly. Int J Nanomedicine. 2012;7:2153–64.PubMedCentralPubMedGoogle Scholar
  12. 12.
    Patil S, Sandberg A, Heckert E, Self W, Seal S. Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential. Biomaterials. 2007;28(31):4600–7.PubMedCentralPubMedGoogle Scholar
  13. 13.
    Berg JM, Romoser A, Banerjee N, Zebda R, Sayes CM. The relationship between pH and zeta potential of ~30 nm metal oxide nanoparticle suspensions relevant to in vitro toxicological evaluations. Nanotoxicology. 2009;3(4):276–83.Google Scholar
  14. 14.
    Clogston JD, Patri AK. Zeta potential measurement. In: McNeil SE, editor. Characterization of nanoparticles intended for drug delivery methods in molecular biology, vol. 697. New York: Humana Press; 2011. p. 63–70.Google Scholar
  15. 15.
    Wagner A, Belli R, Stotzel C, Hilpert A, Muller FA, Lohbauer U. Biomimetically- and hydrothermally-grown HAp nanoparticles as reinforcing fillers for dental adhesives. J Adhes Dent. 2013;15(5):413–22.PubMedGoogle Scholar
  16. 16.
    Sadat-Shojai M, Khorasani MT, Dinpanah-Khoshdargi E, Jamshidi A. Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomater. 2013;9(8):7591–621.PubMedGoogle Scholar
  17. 17.
    Crisp S, Ferner AJ, Lewis BG, Wilson AD. Properties of improved glass-ionomer cement formulations. J Dent. 1975;3(3):125–30.PubMedGoogle Scholar
  18. 18.
    McLean JW, Nicholson JW, Wilson AD. Proposed nomenclature for glass-ionomer dental cements and related materials. Quintessence Int. 1994;25(9):​587–9.PubMedGoogle Scholar
  19. 19.
    McKinney JE, Antonucci JM, Rupp NW. Wear and microhardness of glass-ionomer cements. J Dent Res. 1987;66(6):1134–9.PubMedGoogle Scholar
  20. 20.
    Mitra SB, Oxman JD, Falsafi A, Ton TT. Fluoride release and recharge behavior of a nano-filled resin-modified glass ionomer compared with that of other fluoride releasing materials. Am J Dent. 2011;24(6):​372–8.PubMedGoogle Scholar
  21. 21.
    Smith DC. Development of glass-ionomer cement systems. Biomaterials. 1998;19(6):467–78.PubMedGoogle Scholar
  22. 22.
    Sidhu SK, Sherriff M, Watson TF. In vivo changes in roughness of resin-modified glass ionomer materials. Dent Mater Off Publ AcadDent Mater. 1997;​13(3):208–13.Google Scholar
  23. 23.
    Goenka S, Balu R, Sampath Kumar TS. Effects of nanocrystalline calcium deficient hydroxyapatite incorporation in glass ionomer cements. J Mech Behav Biomed Mater. 2012;7:69–76.PubMedGoogle Scholar
  24. 24.
    Rajabzadeh G, Salehi S, Nemati A, Tavakoli R, Solati Hashjin M. Enhancing glass ionomer cement features by using the HA/YSZ nanocomposite: a feed forward neural network modelling. J Mech Behav Biomed Mater. 2014;29:317–27.PubMedGoogle Scholar
  25. 25.
    Randall RC, Wilson NH. Glass-ionomer restoratives: a systematic review of a secondary caries treatment effect. J Dent Res. 1999;78(2):628–37.PubMedGoogle Scholar
  26. 26.
    Wiegand A, Buchalla W, Attin T. Review on fluoride-releasing restorative materials–fluoride release and uptake characteristics, antibacterial activity and influence on caries formation. Dent Mater Off Publ AcadDent Mater. 2007;23(3):​343–62.Google Scholar
  27. 27.
    Xie D, Brantley WA, Culbertson BM, Wang G. Mechanical properties and microstructures of glass-ionomer cements. Dent Mater Off Publ AcadDent Mater. 2000;16(2):129–38.Google Scholar
  28. 28.
    Shoji AK, H, Kentaro TGC. Fluoraluminosilicate glass powder for dental glass ionomer cement. 1988. US patent US 4775592 A. http://www.google.ca/patents/US4775592.
  29. 29.
    Xu HH, Sun L, Weir MD, Antonucci JM, Takagi S, Chow LC, et al. Nano DCPA-whisker composites with high strength and Ca and PO(4) release. J Dent Res. 2006;85(8):722–7.PubMedCentralPubMedGoogle Scholar
  30. 30.
    Xu HH, Moreau JL, Sun L, Chow LC. Novel CaF(2) nanocomposite with high strength and fluoride ion release. J Dent Res. 2010;89(7):739–45.PubMedCentralPubMedGoogle Scholar
  31. 31.
    De Maeyer EA, Verbeeck RM, Vercruysse CW. Reactivity of fluoride-containing calcium aluminosilicate glasses used in dental glass-ionomer cements. J Dent Res. 1998;77(12):2005–11.PubMedGoogle Scholar
  32. 32.
    Moshaverinia A, Ansari S, Moshaverinia M, Roohpour N, Darr JA, Rehman I. Effects of incorporation of hydroxyapatite and fluoroapatite nanobioceramics into conventional glass ionomer cements (GIC). Acta Biomater. 2008;4(2):432–40.PubMedGoogle Scholar
  33. 33.
    Moshaverinia A, Ansari S, Movasaghi Z, Billington RW, Darr JA, Rehman IU. Modification of conventional glass-ionomer cements with N-vinylpyrrolidone containing polyacids, nano-hydroxy and fluoroapatite to improve mechanical properties. Dent Mater Off Publ AcadDent Mater. 2008;24(10):1381–90.Google Scholar
  34. 34.
    Lee JJ, Lee YK, Choi BJ, Lee JH, Choi HJ, Son HK, et al. Physical properties of resin-reinforced glass ionomer cement modified with micro and nano-hydroxyapatite. J Nanosci Nanotechnol. 2010;​10(8):5270–6.PubMedGoogle Scholar
  35. 35.
    Siddharthan A, Seshadri SK, Sampath Kumar TS. Microwave accelerated synthesis of nanosized calcium deficient hydroxyapatite. J Mater Sci Mater Med. 2004;15(12):1279–84.PubMedGoogle Scholar
  36. 36.
    Fadeel B, Garcia-Bennett AE. Better safe than sorry: Understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Adv Drug Deliv Rev. 2010;62(3):​362–74.PubMedGoogle Scholar
  37. 37.
    El-Negoly SA, El-Fallal AA, El-Sherbiny IM. A New Modification for Improving Shear Bond Strength and Other Mechanical Properties of Conventional Glass-ionomer Restorative Materials. J Adhes Dent. 2014;16(1):41–7.PubMedGoogle Scholar
  38. 38.
    Elsaka SE, Hamouda IM, Swain MV. Titanium dioxide nanoparticles addition to a conventional glass-ionomer restorative: influence on physical and antibacterial properties. J Dent. 2011;39(9):589–98.PubMedGoogle Scholar
  39. 39.
    Tsuang YH, Sun JS, Huang YC, Lu CH, Chang WH, Wang CC. Studies of photokilling of bacteria using titanium dioxide nanoparticles. Artif Organs. 2008;​32(2):167–74.PubMedGoogle Scholar
  40. 40.
    Hook ER, Owen OJ, Bellis CA, Holder JA, O’Sullivan DJ, Barbour ME. Development of a novel antimicrobial-releasing glass ionomer cement functionalized with chlorhexidine hexametaphosphate nanoparticles. J Nanobiotechnol. 2014;12(1):3.Google Scholar
  41. 41.
    3M ESPE. Ketac nano: light curing glass ionomer restorative. St. Paul: 3M ESPE; 2007.Google Scholar
  42. 42.
    Curtis AR, Palin WM, Fleming GJ, Shortall AC, Marquis PM. The mechanical properties of nanofilled resin-based composites: the impact of dry and wet cyclic pre-loading on bi-axial flexure strength. Dent Mater Off Publ AcadDent Mater. 2009;25(2):​188–97.Google Scholar
  43. 43.
    de Paula AB, Fucio SB, Ambrosano GM, Alonso RC, Sardi JC, Puppin-Rontani RM. Biodegradation and abrasive wear of nano restorative materials. Oper Dent. 2011;36(6):670–7.PubMedGoogle Scholar
  44. 44.
    de Fucio SB, de Paula AB, de Carvalho FG, Feitosa VP, Ambrosano GM, Puppin-Rontani RM. Biomechanical degradation of the nano-filled resin-modified glass-ionomer surface. Am J Dent. 2012;25(6):315–20.PubMedGoogle Scholar
  45. 45.
    Guo X, Wang Y, Spencer P, Ye Q, Yao X. Effects of water content and initiator composition on photopolymerization of a model BisGMA/HEMA resin. Dent Mater Off Publ AcadDent Mater. 2008;​24(6):​824–31.Google Scholar
  46. 46.
    Neelakantan P, John S, Anand S, Sureshbabu N, Subbarao C. Fluoride release from a new glass-ionomer cement. Oper Dent. 2011;36(1):80–5.PubMedGoogle Scholar
  47. 47.
    Moreau JL, Xu HH. Fluoride releasing restorative materials: effects of pH on mechanical properties and ion release. Dent Mater Off Publ AcadDent Mater. 2010;26(11):e227–35.Google Scholar
  48. 48.
    Perdigao J, Dutra-Correa M, Saraceni SH, Ciaramicoli MT, Kiyan VH. Randomized clinical trial of two resin-modified glass ionomer materials: 1-year results. Oper Dent. 2012;37(6):591–601.PubMedGoogle Scholar
  49. 49.
    Coutinho E, Cardoso MV, De Munck J, Neves AA, Van Landuyt KL, Poitevin A, et al. Bonding effectiveness and interfacial characterization of a nano-filled resin-modified glass-ionomer. Dent Mater Off Publ AcadDent Mater. 2009;25(11):1347–57.Google Scholar
  50. 50.
    Friedl K, Hiller KA, Friedl KH. Clinical performance of a new glass ionomer based restoration system: a retrospective cohort study. Dent Mater Off Publ AcadDent Mater. 2011;27(10):1031–7.Google Scholar
  51. 51.
    Marquezan M, Osorio R, Ciamponi AL, Toledano M. Resistance to degradation of bonded restorations to simulated caries-affected primary dentin. Am J Dent. 2010;23(1):47–52.PubMedGoogle Scholar
  52. 52.
    Bonifacio CC, Werner A, Kleverlaan CJ. Coating glass-ionomer cements with a nanofilled resin. Acta Odontol Scand. 2012;70(6):471–7.PubMedGoogle Scholar
  53. 53.
    Bagheri R, Azar MR, Tyas MJ, Burrow MF. The effect of aging on the fracture toughness of esthetic restorative materials. Am J Dent. 2010;23(3):​142–6.PubMedGoogle Scholar
  54. 54.
    Lammeier C, Li Y, Lunos S, Fok A, Rudney J, Jones RS. Influence of dental resin material composition on cross-polarization-optical coherence tomography imaging. J Biomed Opt. 2012;17(10):106002.PubMedCentralPubMedGoogle Scholar
  55. 55.
    Moszner N, Klapdohr S. Nanotechnology for dental composites. Int J of Nanotechnology. 2004;1(1/2):​130–56.Google Scholar
  56. 56.
    Klapdohr S, Moszner N. New inorganic components for dental filling composites. Monatshefte fur Chemie. 2005;136:21–45.Google Scholar
  57. 57.
    Wilson KS, Zhang K, Antonucci JM. Systematic variation of interfacial phase reactivity in dental nanocomposites. Biomaterials. 2005;26(25):​5095–103.PubMedGoogle Scholar
  58. 58.
    Chen MH, Chen CR, Hsu SH, Sun SP, Su WF. Low shrinkage light curable nanocomposite for dental restorative material. Dent Mater Off Publ AcadDent Mater. 2006;22(2):138–45.Google Scholar
  59. 59.
    Furman B, Rawls HR, Wellinghoff S, Dixon H, Lankford J, Nicolella D. Metal-oxide nanoparticles for the reinforcement of dental restorative resins. Crit Rev Biomed Eng. 2000;28(3–4):439–43.PubMedGoogle Scholar
  60. 60.
    Wang Y, Lee JJ, Lloyd IK, Wilson Jr OC, Rosenblum M, Thompson V. High modulus nanopowder reinforced dimethacrylate matrix composites for dental cement applications. J Biomed Mater Res A. 2007;​82(3):​651–7.PubMedGoogle Scholar
  61. 61.
    Tian M, Gao Y, Liu Y, Liao Y, Hedin NE, Fong H. Fabrication and evaluation of Bis-GMA/TEGDMA dental resins/composites containing nano fibrillar silicate. Dent Mater Off Publ AcadDent Mater. 2008;24(2):235–43.Google Scholar
  62. 62.
    Xia Y, Zhang F, Xie H, Gu N. Nanoparticle-reinforced resin-based dental composites. J Dent. 2008;36(6):450–5.PubMedGoogle Scholar
  63. 63.
    Zhang K, Melo MA, Cheng L, Weir MD, Bai Y, Xu HH. Effect of quaternary ammonium and silver nanoparticle-containing adhesives on dentin bond strength and dental plaque microcosm biofilms. Dent Mater Off Publ AcadDent Mater. 2012;28(8):​842–52.Google Scholar
  64. 64.
    Zhang K, Li F, Imazato S, Cheng L, Liu H, Arola DD, et al. Dual antibacterial agents of nano-silver and 12-methacryloyloxydodecylpyridinium bromide in dental adhesive to inhibit caries. J Biomed Mater Res B Appl Biomater. 2013;101(6):929–38.PubMedGoogle Scholar
  65. 65.
    Sideridou ID, Karabela MM, Vouvoudi E. Physical properties of current dental nanohybrid and nanofill light-cured resin composites. Dent Mater Off Publ AcadDent Mater. 2011;27(6):598–607.Google Scholar
  66. 66.
    Endo T, Finger WJ, Kanehira M, Utterodt A, Komatsu M. Surface texture and roughness of polished nanofill and nanohybrid resin composites. Dent Mater J. 2010;29(2):213–23.PubMedGoogle Scholar
  67. 67.
    Taha DG, Abdel-Samad AA, Mahmoud SH. Fracture resistance of maxillary premolars with class II MOD cavities restored with Ormocer, Nanofilled, and Nanoceramic composite restorative systems. Quintessence Int. 2011;42(7):579–87.PubMedGoogle Scholar
  68. 68.
    Tabatabaei MH, Sadrai S, Bassir SH, Veisy N, Dehghan S. Effect of food stimulated liquids and thermocycling on the monomer elution from a nanofilled composite. Open Dent J. 2013;7:62–7.PubMedCentralPubMedGoogle Scholar
  69. 69.
    Eren D, Bektas OO, Siso SH. Three different adhesive systems; three different bond strength test methods. Acta Odontol Scand. 2013;71(3–4):978–83.PubMedGoogle Scholar
  70. 70.
    Vanderlei A, Passos SP, Ozcan M, Bottino MA, Valandro LF. Durability of adhesion between feldspathic ceramic and resin cements: effect of adhesive resin, polymerization mode of resin cement, and aging. J Prosthodont Off J Am Coll Prosthodont. 2013;22(3):196–202.Google Scholar
  71. 71.
    Ernst CP, Brandenbusch M, Meyer G, Canbek K, Gottschalk F, Willershausen B. Two-year clinical performance of a nanofiller vs a fine-particle hybrid resin composite. Clin Oral Investig. 2006;10(2):​119–25.PubMedGoogle Scholar
  72. 72.
    Polydorou O, Konig A, Hellwig E, Kummerer K. Long-term release of monomers from modern dental-composite materials. Eur J Oral Sci. 2009;​117(1):​68–75.PubMedGoogle Scholar
  73. 73.
    da Silva JM, da Rocha DM, Travassos AC, Fernandes Jr VV, Rodrigues JR. Effect of different finishing times on surface roughness and maintenance of polish in nanoparticle and microhybrid composite resins. Eur J Esthet Dent Off J Eur Acad Esthet Dent. 2010;5(3):288–98.Google Scholar
  74. 74.
    Feitosa VP, Fugolin AP, Correr AB, Correr-Sobrinho L, Consani S, Watson TF, et al. Effects of different photo-polymerization protocols on resin-dentine muTBS, mechanical properties and cross-link density of a nano-filled resin composite. J Dent. 2012;​40(10):802–9.PubMedGoogle Scholar
  75. 75.
    Egilmez F, Ergun G, Cekic-Nagas I, Vallittu PK, Lassila LV. Short and long term effects of additional post curing and polishing systems on the color change of dental nano-composites. Dent Mater J. 2013;​32(1):107–14.PubMedGoogle Scholar
  76. 76.
    Al Kheraif AA, Qasim SS, Ramakrishnaiah R, Ihtesham ur R. Effect of different beverages on the color stability and degree of conversion of nano and microhybrid composites. Dent Mater J. 2013;​32(2):326–31.PubMedGoogle Scholar
  77. 77.
    Takano T, Tasaka A, Yoshinari M, Sakurai K. Fatigue strength of Ce-TZP/Al2O3 nanocomposite with different surfaces. J Dent Res. 2012;91(8):800–4.PubMedGoogle Scholar
  78. 78.
    Fischer J, Stawarczyk B, Sailer I, Hammerle CHF. Shear bond strength between veneering ceramics and ceria-stabilized zirconia/alumina. J Prosthet Dent. 2010;103(5):267–74.PubMedGoogle Scholar
  79. 79.
    Xu HH, Weir MD, Sun L, Moreau JL, Takagi S, Chow LC, et al. Strong nanocomposites with Ca, PO(4), and F release for caries inhibition. J Dent Res. 2010;89(1):19–28.PubMedCentralPubMedGoogle Scholar
  80. 80.
    Nakabayashi N, Kojima K, Masuhara E. The promotion of adhesion by the infiltration of monomers into tooth substrates. J Biomed Mater Res. 1982;16(3):​265–73.PubMedGoogle Scholar
  81. 81.
    Hosoya Y, Tay FR. Hardness, elasticity, and ultrastructure of bonded sound and caries-affected primary tooth dentin. J Biomed Mater Res B Appl Biomater. 2007;81(1):135–41.PubMedGoogle Scholar
  82. 82.
    Nakabayashi N, Nakamura M, Yasuda N. Hybrid layer as a dentin-bonding mechanism. J Esthet Dent. 1991;3(4):133–8.PubMedGoogle Scholar
  83. 83.
    Poitevin A, De Munck J, Van Landuyt K, Coutinho E, Peumans M, Lambrechts P, et al. Critical analysis of the influence of different parameters on the microtensile bond strength of adhesives to dentin. J Adhes Dent. 2008;10(1):7–16.PubMedGoogle Scholar
  84. 84.
    Breschi L, Mazzoni A, Ruggeri A, Cadenaro M, Di Lenarda R, De Stefano Dorigo E. Dental adhesion review: aging and stability of the bonded interface. Dent Mater Off Publ AcadDent Mater. 2008;24(1):​90–101.Google Scholar
  85. 85.
    Osorio R, Yamauti M, Osorio E, Roman JS, Toledano M. Zinc-doped dentin adhesive for collagen protection at the hybrid layer. Eur J Oral Sci. 2011;119(5):​401–10.PubMedGoogle Scholar
  86. 86.
    Sano H, Takatsu T, Ciucchi B, Horner JA, Matthews WG, Pashley DH. Nanoleakage: leakage within the hybrid layer. Oper Dent. 1995;20(1):18–25.PubMedGoogle Scholar
  87. 87.
    Hashimoto M, Tay FR, Ohno H, Sano H, Kaga M, Yiu C, et al. SEM and TEM analysis of water degradation of human dentinal collagen. J Biomed Mater Res B Appl Biomater. 2003;66(1):287–98.PubMedGoogle Scholar
  88. 88.
    Hebling J, Pashley DH, Tjaderhane L, Tay FR. Chlorhexidine arrests subclinical degradation of dentin hybrid layers in vivo. J Dent Res. 2005;84(8):​741–6.PubMedGoogle Scholar
  89. 89.
    Spencer P, Wang Y. Adhesive phase separation at the dentin interface under wet bonding conditions. J Biomed Mater Res. 2002;62(3):447–56.PubMedGoogle Scholar
  90. 90.
    Kim JS, Cho BH, Lee IB, Um CM, Lim BS, Oh MH, et al. Effect of the hydrophilic nanofiller loading on the mechanical properties and the microtensile bond strength of an ethanol-based one-bottle dentin adhesive. J Biomed Mater Res B Appl Biomater. 2005;​72(2):284–91.PubMedGoogle Scholar
  91. 91.
    Lohbauer U, Wagner A, Belli R, Stoetzel C, Hilpert A, Kurland HD, et al. Zirconia nanoparticles prepared by laser vaporization as fillers for dental adhesives. Acta Biomater. 2010;6(12):4539–46.PubMedGoogle Scholar
  92. 92.
    Osorio E, Toledano M, Yamauti M, Osorio R. Differential nanofiller cluster formations in dental adhesive systems. Microsc Res Tech. 2012;75(6):​749–57.PubMedGoogle Scholar
  93. 93.
    Denehy GE. A direct approach to restore anterior teeth. Am J Dent. 2000;13(Spec No):55D–9.PubMedGoogle Scholar
  94. 94.
    Hickel R, Dasch W, Janda R, Tyas M, Anusavice K. New direct restorative materials. FDI Commission Project. Int Dent J. 1998;48(1):3–16.PubMedGoogle Scholar
  95. 95.
    Hosseinalipour M, Javadpour J, Rezaie H, Dadras T, Hayati AN. Investigation of mechanical properties of experimental Bis-GMA/TEGDMA dental composite resins containing various mass fractions of silica nanoparticles. J Prosthodont Off J Am Coll Prosthodont. 2010;19(2):112–7.Google Scholar
  96. 96.
    Xu HH, Moreau JL, Sun L, Chow LC. Nanocomposite containing amorphous calcium phosphate nanoparticles for caries inhibition. Dent Mater Off Publ AcadDent Mater. 2011;27(8):762–9.Google Scholar
  97. 97.
    Van Landuyt KL, Snauwaert J, De Munck J, Peumans M, Yoshida Y, Poitevin A, et al. Systematic review of the chemical composition of contemporary dental adhesives. Biomaterials. 2007;28(26):​3757–85.PubMedGoogle Scholar
  98. 98.
    Kasraei ShA M, Khamverdi Z, Khalegh Nejad S. Effect of nanofiller addition to an experimental dentin adhesive on microtensile bond strength to human dentin. J Dent (Tehran). 2009;6:91–6.Google Scholar
  99. 99.
    Osorio E, Toledano M, Aguilera FS, Tay FR, Osorio R. Ethanol wet-bonding technique sensitivity assessed by AFM. J Dent Res. 2010;89(11):1264–9.PubMedCentralPubMedGoogle Scholar
  100. 100.
    Tay FR, Moulding KM, Pashley DH. Distribution of nanofillers from a simplified-step adhesive in acid-conditioned dentin. J Adhes Dent. 1999;1(2):​103–17.PubMedGoogle Scholar
  101. 101.
    de Monredon-Senani S, Bonhomme C, Ribot F, Babonneau F. Covalent grafting of organoalkoxysilanes on silica surfaces in water-rich medium as evidenced by Si-29 NMR. J Sol-gel Sci Techn. 2009;​50(2):​152–7.Google Scholar
  102. 102.
    Cheng L, Weir MD, Zhang K, Xu SM, Chen Q, Zhou X, et al. Antibacterial nanocomposite with calcium phosphate and quaternary ammonium. J Dent Res. 2012;91(5):460–6.PubMedCentralPubMedGoogle Scholar
  103. 103.
    Cheng L, Weir MD, Xu HH, Antonucci JM, Kraigsley AM, Lin NJ, et al. Antibacterial amorphous calcium phosphate nanocomposites with a quaternary ammonium dimethacrylate and silver nanoparticles. Dent Mater Off Publ AcadDent Mater. 2012;28(5):561–72.Google Scholar
  104. 104.
    Li F, Weir MD, Chen J, Xu HH. Comparison of quaternary ammonium-containing with nano-silver-containing adhesive in antibacterial properties and cytotoxicity. Dent Mater Off Publ AcadDent Mater. 2013;29(4):450–61.Google Scholar
  105. 105.
    Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, et al. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;​16(10):​2346–53.PubMedGoogle Scholar
  106. 106.
    Zhang K, Cheng L, Imazato S, Antonucci JM, Lin NJ, Lin-Gibson S, et al. Effects of dual antibacterial agents MDPB and nano-silver in primer on microcosm biofilm, cytotoxicity and dentine bond properties. J Dent. 2013;41(5):464–74.PubMedCentralPubMedGoogle Scholar
  107. 107.
    Cheng L, Zhang K, Weir MD, Liu H, Zhou X, Xu HH. Effects of antibacterial primers with quaternary ammonium and nano-silver on Streptococcus mutans impregnated in human dentin blocks. Dent Mater Off Publ AcadDent Mater. 2013;29(4):​462–72.Google Scholar
  108. 108.
    Skrtic D, Antonucci JM, Eanes ED, Eichmiller FC, Schumacher GE. Physicochemical evaluation of bioactive polymeric composites based on hybrid amorphous calcium phosphates. J Biomed Mater Res. 2000;53(4):381–91.PubMedGoogle Scholar
  109. 109.
    Melo MA, Cheng L, Zhang K, Weir MD, Rodrigues LK, Xu HH. Novel dental adhesives containing nanoparticles of silver and amorphous calcium phosphate. Dent Mater Off Publ AcadDent Mater. 2013;​29(2):​199–210.Google Scholar
  110. 110.
    Melo MA, Cheng L, Weir MD, Hsia RC, Rodrigues LK, Xu HH. Novel dental adhesive containing antibacterial agents and calcium phosphate nanoparticles. J Biomed Mater Res B Appl Biomater. 2013;​101(4):620–9.PubMedCentralPubMedGoogle Scholar
  111. 111.
    Besinis A, van Noort R, Martin N. Infiltration of demineralized dentin with silica and hydroxyapatite nanoparticles. Dent Mater Off Publ AcadDent Mater. 2012;28(9):1012–23.Google Scholar
  112. 112.
    Cai YR, Tang RK. Calcium phosphate nanoparticles in biomineralization and biomaterials. J Mater Chem. 2008;18(32):3775–87.Google Scholar
  113. 113.
    Sadat-Shojai M, Atai M, Nodehi A, Khanlar LN. Hydroxyapatite nanorods as novel fillers for improving the properties of dental adhesives: Synthesis and application. Dent Mater Off Publ AcadDent Mater. 2010;26(5):471–82.Google Scholar
  114. 114.
    Earl JS, Wood DJ, Milne SJ. Nanoparticles for dentine tubule infiltration: an in vitro study. J Nanosci Nanotechnol. 2009;9(11):6668–74.PubMedGoogle Scholar
  115. 115.
    Kajita M, Hikosaka K, Iitsuka M, Kanayama A, Toshima N, Miyamoto Y. Platinum nanoparticle is a useful scavenger of superoxide anion and hydrogen peroxide. Free Radic Res. 2007;41(6):615–26.PubMedGoogle Scholar
  116. 116.
    Salamanca-Buentello F, Persad DL, Court EB, Martin DK, Daar AS, Singer PA. Nanotechnology and the developing world. PLoS Med. 2005;2(5):e97.PubMedCentralPubMedGoogle Scholar
  117. 117.
    Hoshika S, Nagano F, Tanaka T, Ikeda T, Wada T, Asakura K, et al. Effect of application time of colloidal platinum nanoparticles on the microtensile bond strength to dentin. Dent Mater J. 2010;​29(6):682–9.PubMedGoogle Scholar
  118. 118.
    Nagano F, Selimovic D, Noda M, Ikeda T, Tanaka T, Miyamoto Y, et al. Improved bond performance of a dental adhesive system using nano-technology. Bioed Mater Eng. 2009;19(2–3):249–57.Google Scholar
  119. 119.
    Hoshika S, Nagano F, Tanaka T, Wada T, Asakura K, Koshiro K, et al. Expansion of nanotechnology for dentistry: effect of colloidal platinum nanoparticles on dentin adhesion mediated by 4-META/MMA-TBB. J Adhes Dent. 2011;13(5):411–6.PubMedGoogle Scholar
  120. 120.
    Toledano M, Sauro S, Cabello I, Watson T, Osorio R. A Zn-doped etch-and-rinse adhesive may improve the mechanical properties and the integrity at the bonded-dentin interface. Dent Mater Off Publ AcadDent Mater. 2013;29(8):e142–52.Google Scholar
  121. 121.
    Osorio R, Yamauti M, Osorio E, Ruiz-Requena ME, Pashley DH, Tay FR, et al. Zinc reduces collagen degradation in demineralized human dentin explants. J Dent. 2011;39(2):148–53.PubMedGoogle Scholar
  122. 122.
    de Souza AP, Gerlach RF, Line SR. Inhibition of human gingival gelatinases (MMP-2 and MMP-9) by metal salts. Dent Mater Off Publ AcadDent Mater. 2000;16(2):103–8.Google Scholar
  123. 123.
    Toledano M, Yamauti M, Ruiz-Requena ME, Osorio R. A ZnO-doped adhesive reduced collagen degradation favouring dentine remineralization. J Dent. 2012;40(9):756–65.PubMedGoogle Scholar
  124. 124.
    Sakharov DV, Lim C. Zn protein simulations including charge transfer and local polarization effects. J Am Chem Soc. 2005;127(13):4921–9.PubMedGoogle Scholar
  125. 125.
    Atai M, Solhi L, Nodehi A, Mirabedini SM, Kasraei S, Akbari K, et al. PMMA-grafted nanoclay as novel filler for dental adhesives. Dent Mater Off Publ AcadDent Mater. 2009;25(3):339–47.Google Scholar
  126. 126.
    Solhi L, Atai M, Nodehi A, Imani M. A novel dentin bonding system containing poly(methacrylic acid) grafted nanoclay: synthesis, characterization and properties. Dent Mater Off Publ AcadDent Mater. 2012;28(10):1041–50.Google Scholar
  127. 127.
    Solhi L, Atai M, Nodehi A, Imani M, Ghaemi A, Khosravi K. Poly(acrylic acid) grafted montmorillonite as novel fillers for dental adhesives: synthesis, characterization and properties of the adhesive. Dent Mater Off Publ AcadDent Mater. 2012;28(4):​369–77.Google Scholar
  128. 128.
    Moraes RR, Garcia JW, Barros MD, Lewis SH, Pfeifer CS, Liu J, et al. Control of polymerization shrinkage and stress in nanogel-modified monomer and composite materials. Dent Mater Off Publ AcadDent Mater. 2011;27(6):509–19.Google Scholar
  129. 129.
    Moraes RR, Garcia JW, Wilson ND, Lewis SH, Barros MD, Yang B, et al. Improved dental adhesive formulations based on reactive nanogel additives. J Dent Res. 2012;91(2):179–84.PubMedCentralPubMedGoogle Scholar
  130. 130.
    Cheng YJ, Zeiger DN, Howarter JA, Zhang XR, Lin NJ, Antonucci JM, et al. In situ formation of silver nanoparticles in photocrosslinking polymers. J Biomed Mater Res B. 2011;97B(1):124–31.Google Scholar
  131. 131.
    Madler L, Krumeich F, Burtscher P, Moszner N. Visibly transparent & radiopaque inorganic organic composites from flame-made mixed-oxide fillers. J Nanopart Res. 2006;8:323–33.Google Scholar
  132. 132.
    Chen Q, Zhao Y, Wu W, Xu T, Fong H. Fabrication and evaluation of Bis-GMA/TEGDMA dental resins/composites containing halloysite nanotubes. Dent Mater Off Publ AcadDent Mater. 2012;28(10):​1071–9.Google Scholar
  133. 133.
    Chen L, Xu C, Wang Y, Shi J, Yu Q, Li H. BisGMA/TEGDMA dental nanocomposites containing glyoxylic acid-modified high-aspect ratio hydroxyapatite nanofibers with enhanced dispersion. Biomed Mater. 2012;7(4):045014.PubMedCentralPubMedGoogle Scholar
  134. 134.
    Beyth N, Yudovin-Farber I, Bahir R, Domb AJ, Weiss EI. Antibacterial activity of dental composites containing quaternary ammonium polyethylenimine nanoparticles against Streptococcus mutans. Biomaterials. 2006;27(21):3995–4002.PubMedGoogle Scholar
  135. 135.
    Yudovin-Farber I, Beyth N, Nyska A, Weiss EI, Golenser J, Domb AJ. Surface characterization and biocompatibility of restorative resin containing nanoparticles. Biomacromolecules. 2008;9(11):​3044–50.PubMedGoogle Scholar
  136. 136.
    Beyth N, Houri-Haddad Y, Baraness-Hadar L, Yudovin-Farber I, Domb AJ, Weiss EI. Surface antimicrobial activity and biocompatibility of incorporated polyethylenimine nanoparticles. Biomaterials. 2008;29(31):4157–63.PubMedGoogle Scholar
  137. 137.
    Beyth N, Yudovin-Farber I, Perez-Davidi M, Domb AJ, Weiss EI. Polyethyleneimine nanoparticles incorporated into resin composite cause cell death and trigger biofilm stress in vivo. Proc Natl Acad Sci U S A. 2010;107(51):22038–43.PubMedCentralPubMedGoogle Scholar
  138. 138.
    Langhorst SE, O’Donnell JN, Skrtic D. In vitro remineralization of enamel by polymeric amorphous calcium phosphate composite: quantitative microradiographic study. Dent Mater Off Publ AcadDent Mater. 2009;25(7):884–91.Google Scholar
  139. 139.
    Regnault WF, Icenogle TB, Antonucci JM, Skrtic D. Amorphous calcium phosphate/urethane methacrylate resin composites. I. Physicochemical characterization. J Mater Sci Mater Med. 2008;19(2):​507–15.PubMedCentralPubMedGoogle Scholar
  140. 140.
    Moreau JL, Sun L, Chow LC, Xu HH. Mechanical and acid neutralizing properties and bacteria inhibition of amorphous calcium phosphate dental nanocomposite. J Biomed Mater Res B Appl Biomater. 2011;98(1):80–8.PubMedCentralPubMedGoogle Scholar
  141. 141.
    Moreau JL, Weir MD, Giuseppetti AA, Chow LC, Antonucci JM, Xu HH. Long-term mechanical durability of dental nanocomposites containing amorphous calcium phosphate nanoparticles. J Biomed Mater Res B Appl Biomater. 2012;100(5):1264–73.PubMedCentralPubMedGoogle Scholar
  142. 142.
    Cheng L, Weir MD, Xu HH, Kraigsley AM, Lin NJ, Lin-Gibson S, et al. Antibacterial and physical properties of calcium-phosphate and calcium-fluoride nanocomposites with chlorhexidine. Dent Mater Off Publ AcadDent Mater. 2012;28(5):573–83.Google Scholar
  143. 143.
    Janardhanan R, Karuppaiah M, Hebalkar N, Rao TN. Synthesis and surface chemistry of nano silver particles. Polyhedron. 2009;28(12):2522–30.Google Scholar
  144. 144.
    Kasraei S, Azarsina M. Addition of silver nanoparticles reduces the wettability of methacrylate and silorane-based composites. Braz Oral Res. 2012;​26(6):​505–10.PubMedGoogle Scholar
  145. 145.
    Pillalamarri SK, Blum FD, Tokuhiro AT, Bertino MF. One-pot synthesis of polyaniline – metal nanocomposites. Chem Mater. 2005;17(24):5941–4.Google Scholar
  146. 146.
    Fan C, Chu L, Rawls HR, Norling BK, Cardenas HL, Whang K. Development of an antimicrobial resin–a pilot study. Dent Mater Off Publ AcadDent Mater. 2011;27(4):322–8.Google Scholar
  147. 147.
    Durner J, Obermaier J, Draenert M, Ilie N. Correlation of the degree of conversion with the amount of elutable substances in nano-hybrid dental composites. Dent Mater Off Publ AcadDent Mater. 2012;28(11):1146–53.Google Scholar
  148. 148.
    Tavassoli Hojati S, Alaghemand H, Hamze F, Ahmadian Babaki F, Rajab-Nia R, Rezvani MB, et al. Antibacterial, physical and mechanical properties of flowable resin composites containing zinc oxide nanoparticles. Dent Mater Off Publ AcadDent Mater. 2013;29(5):495–505.Google Scholar
  149. 149.
    Ling L, Xu X, Choi GY, Billodeaux D, Guo G, Diwan RM. Novel F-releasing composite with improved mechanical properties. J Dent Res. 2009;​88(1):83–8.PubMedCentralPubMedGoogle Scholar
  150. 150.
    Xu HHK, Moreau JL, Sun LM, Chow LC. Strength and fluoride release characteristics of a calcium fluoride based dental nanocomposite. Biomaterials. 2008;​29(32):4261–7.PubMedCentralPubMedGoogle Scholar
  151. 151.
    Weir MD, Moreau JL, Levine ED, Strassler HE, Chow LC, Xu HHK. Nanocomposite containing CaF2 nanoparticles: thermal cycling, wear and long-term water-aging. Dent Mater. 2012;28(6):642–52.PubMedCentralPubMedGoogle Scholar
  152. 152.
    Leung D, Spratt DA, Pratten J, Gulabivala K, Mordan NJ, Young AM. Chlorhexidine-releasing methacrylate dental composite materials. Biomaterials. 2005;26(34):7145–53.PubMedGoogle Scholar
  153. 153.
    Anusavice KJ, Zhang NZ, Shen C. Controlled release of chlorhexidine from UDMA-TEGDMA resin. J Dent Res. 2006;85(10):950–4.PubMedCentralPubMedGoogle Scholar
  154. 154.
    Xu HHK, Martin TA, Antonucci JM, Eichmiller FC. Ceramic whisker reinforcement of dental resin composites. J Dent Res. 1999;78(2):706–12.PubMedGoogle Scholar
  155. 155.
    Xu HH, Eichmiller FC, Smith DT, Schumacher GE, Giuseppetti AA, Antonucci JM. Effect of thermal cycling on whisker-reinforced dental resin composites. J Mater Sci Mater Med. 2002;13(9):875–83.PubMedGoogle Scholar
  156. 156.
    Dickens SH, Flaim GM, Takagi S. Mechanical properties and biochemical activity of remineralizing resin-based Ca-PO4 cements. Dent Mater Off Publ AcadDent Mater. 2003;19(6):558–66.Google Scholar
  157. 157.
    Xu HH, Weir MD, Sun L, Takagi S, Chow LC. Effects of calcium phosphate nanoparticles on Ca-PO4 composite. J Dent Res. 2007;86(4):378–83.PubMedCentralPubMedGoogle Scholar
  158. 158.
    Xu HH, Weir MD, Sun L. Nanocomposites with Ca and PO4 release: effects of reinforcement, dicalcium phosphate particle size and silanization. Dent Mater Off Publ AcadDent Mater. 2007;23(12):1482–91.Google Scholar
  159. 159.
    Hannig C, Hannig M. Natural enamel wear–a physiological source of hydroxylapatite nanoparticles for biofilm management and tooth repair? Med Hypotheses. 2010;74(4):670–2.PubMedGoogle Scholar
  160. 160.
    Venegas SC, Palacios JM, Apella MC, Morando PJ, Blesa MA. Calcium modulates interactions between bacteria and hydroxyapatite. J Dent Res. 2006;​85(12):​1124–8.PubMedGoogle Scholar
  161. 161.
    Lezaja M, Veljovic DN, Jokic BM, Cvijovic-Alagic I, Zrilic MM, Miletic V. Effect of hydroxyapatite spheres, whiskers, and nanoparticles on mechanical properties of a model BisGMA/TEGDMA composite initially and after storage. J Biomed Mater Res B Appl Biomater. 2013;101:1469–76.PubMedGoogle Scholar
  162. 162.
    Habekost LV, Camacho GB, Lima GS, Ogliari FA, Cubas GB, Moraes RR. Nanoparticle loading level and properties of experimental hybrid resin luting agents. J Prosthodont Off J Am Coll Prosthodont. 2012;21(7):540–5.Google Scholar
  163. 163.
    Schmidt H. Organically modified silicates by the sol-gel process. Mat Res Soc Symp Proc. 1984;32:​327–35.Google Scholar
  164. 164.
    Schmidt H. Inorganic-organic composites by sol-gel techniques. J Sol-Gel Sci Technology. 1994;1:217–231.Google Scholar
  165. 165.
    Wolter H, Storch W, Ott H. New inorganic/organic copolymers (ormocers) for dental applications. Mater Res Soc Symp Proc. 1994;346:143–9.Google Scholar
  166. 166.
    Moszner N, Gianasmidis A, Klapdohr S, Fischer UK, Rheinberger V. Sol-gel materials 2. Light-curing dental composites based on ormocers of cross-linking alkoxysilane methacrylates and further nano-components. Dent Mater Off Publ AcadDent Mater. 2008;24(6):851–6.Google Scholar
  167. 167.
    Mahmoud SH, El-Embaby AE, AbdAllah AM, Hamama HH. Two-year clinical evaluation of ormocer, nanohybrid and nanofill composite restorative systems in posterior teeth. J Adhes Dent. 2008;10(4):315–22.PubMedGoogle Scholar
  168. 168.
    Efes BG, Dorter C, Gomec Y. Clinical evaluation of an ormocer, a nanofill composite and a hybrid composite at 2 years. Am J Dent. 2006;19(4):236–40.PubMedGoogle Scholar
  169. 169.
    Efes BG, Dorter C, Gomec Y, Koray F. Two-year clinical evaluation of ormocer and nanofill composite with and without a flowable liner. J Adhes Dent. 2006;8(2):119–26.PubMedGoogle Scholar
  170. 170.
    Mejare I, Lingstrom P, Petersson LG, Holm AK, Twetman S, Kallestal C, et al. Caries-preventive effect of fissure sealants: a systematic review. Acta Odontol Scand. 2003;61(6):321–30.PubMedGoogle Scholar
  171. 171.
    Imazato S, Kinomoto Y, Tarumi H, Torii M, Russell RRB, McCabe JF. Incorporation of antibacterial monomer MDPB into dentin primer. J Dent Res. 1997;76(3):768–72.PubMedGoogle Scholar
  172. 172.
    Fan Y, Townsend J, Wang Y, Lee EC, Evans K, Hender E, et al. Formulation and characterization of antibacterial fluoride-releasing sealants. Pediatr Dent. 2013;35(1):E13–8.PubMedGoogle Scholar
  173. 173.
    Kang ES, Jeon YC, Jeong CM, Huh JB, Yun MJ, Kwon YH. Effect of solution temperature on the mechanical properties of dual-cure resin cements. J Advan Prosthod. 2013;5(2):133–9.Google Scholar
  174. 174.
    Rekow ED, Harsono M, Janal M, Thompson VP, Zhang G. Factorial analysis of variables influencing stress in all-ceramic crowns. Dent Mater Off Publ AcadDent Mater. 2006;22(2):125–32.Google Scholar
  175. 175.
    Lu C, Wang R, Mao S, Arola D, Zhang D. Reduction of load-bearing capacity of all-ceramic crowns due to cement aging. J Mech Behav Biomed Mater. 2013;17:56–65.PubMedGoogle Scholar
  176. 176.
    Scherrer SS, Quinn JB, Quinn GD, Wiskott HW. Fractographic ceramic failure analysis using the replica technique. Dent Mater Off Publ AcadDent Mater. 2007;23(11):1397–404.Google Scholar
  177. 177.
    Ali SM. Prediction of the service life of dental porcelains by the measurements of post-indentation slow crack growth. Dent Mater J. 1993;12(1):​45–53.PubMedGoogle Scholar
  178. 178.
    Cesar PF, Soki FN, Yoshimura HN, Gonzaga CC, Styopkin V. Influence of leucite content on slow crack growth of dental porcelains. Dent Mater Off Publ AcadDent Mater. 2008;24(8):1114–22.Google Scholar
  179. 179.
    Zhu SM, Fahrenholtz WG, Hilmas GE. Influence of silicon carbide particle size on the microstructure and mechanical properties of zirconium diboride-silicon carbide ceramics. J Eur Ceram Soc. 2007;​27(4):2077–83.Google Scholar
  180. 180.
    Niihara K. New design concept of structural ceramic – ceramic nanocomposites. J Ceram Soc Jpn. 1991;99:974–82.Google Scholar
  181. 181.
    Zhang J, Liao Y, Li W, Zhao Y, Zhang C. Microstructure and mechanical properties of glass-infiltrated Al2O3/ZrO2 nanocomposites. J Mater Sci Mater Med. 2012;23(2):239–44.PubMedGoogle Scholar
  182. 182.
    Allen AJ, Long GG, Kerch HM, Krueger S, Skandan G, Hahn H, et al. Sintering studies of nanophase ceramic oxides using small angle scattering. Ceram Int. 1996;22(4):275–80.Google Scholar
  183. 183.
    Chevalier J, Gremillard L, Deville S. Low-temperature degradation of Zirconia and implications for biomedical implants. Annu Rev Mater Res. 2007;37:1–32.Google Scholar
  184. 184.
    Yang SF, Yang LQ, Jin ZH, Guo TW, Wang L, Liu HC. New nano-sized Al2O3-BN coating 3Y-TZP ceramic composites for CAD/CAM-produced all-ceramic dental restorations. Part I. Fabrication of powders. Nanomed Nanotechnol Biol Med. 2009;​5(2):​232–9.Google Scholar
  185. 185.
    Garvie RC, Hannink RH, Pascoe RT. Ceramic Steel. Nature. 1975;258(5537):703–4.Google Scholar
  186. 186.
    Tsukuma K, Shimada M. Strength, fracture-toughness and vickers hardness of Ceo2-stabilized tetragonal Zro2 polycrystals (Ce-Tzp). J Mater Sci. 1985;20(4):1178–84.Google Scholar
  187. 187.
    Tsukuma K. Mechanical-properties and thermal-stability of Ceo2 containing tetragonal zirconia polycrystals. Am Ceram Soc Bull. 1986;65(10):​1386–9.Google Scholar
  188. 188.
    Nawa M, Bamba N, Sekino T, Niihara K. The effect of TiO2 addition on strengthening and toughening in intragranular type of 12Ce-TZP/Al2O3 nanocomposites. J Eur Ceram Soc. 1998;18(3):209–19.Google Scholar
  189. 189.
    Nawa M, Nakamoto S, Sekino T, Niihara K. Tough and strong Ce-TZP/alumina nanocomposites doped with titania. Ceram Int. 1998;24(7):497–506.Google Scholar
  190. 190.
    Losic D, Mitchell JG, Voelcker NH. Diatomaceous lessons in nanotechnology and advanced materials. Adv Mater. 2009;21(29):2947–58.Google Scholar
  191. 191.
    Santoyo-Salazar J, Gonzalez G, Schabes-Retchkiman PS, Ascencio JA, Tartaj-Salvador J, Chavez-Carvayar JA. Synthesis and characterisation of YSZ-Al2O3 nanostructured materials. J Nanosci Nanotechnol. 2006;6(7):2103–9.PubMedGoogle Scholar
  192. 192.
    Chevalier J, Taddei P, Gremillard L, Deville S, Fantozzi G, Bartolome JF, et al. Reliability assessment in advanced nanocomposite materials for orthopaedic applications. J Mech Behav Biomed Mater. 2011;4(3):303–14.PubMedGoogle Scholar
  193. 193.
    Silva NRFA, Bonfante EA, Rafferty BT, Zavanelli RA, Martins LL, Rekow ED, et al. Conventional and modified veneered zirconia vs. metalloceramic: fatigue and finite element analysis. J Prosthodont Implant Esthet Reconstruct Dent. 2012;21(6):​433–9.Google Scholar
  194. 194.
    Kelly JR. Ceramics in restorative and prosthetic dentistry. Annu Rev Mater Sci. 1997;27:443–68.Google Scholar
  195. 195.
    Theocharopoulos A, Chen X, Wilson RM, Hill R, Cattell MJ. Crystallization of high-strength nano-scale leucite glass-ceramics. Dent Mater. 2013;​29(11):​1149–57.PubMedGoogle Scholar
  196. 196.
    Chang J, Da Silva JD, Sakai M, Kristiansen J, Ishikawa-Nagai S. The optical effect of composite luting cement on all ceramic crowns. J Dent. 2009;37(12):937–43.PubMedGoogle Scholar
  197. 197.
    Uno M, Kurachi M, Wakamatsu N, Doi Y. Effects of adding silver nanoparticles on the toughening of dental porcelain. J Prosthet Dent. 2013;109(4):​241–7.PubMedGoogle Scholar
  198. 198.
    Cutler RA, Mayhew RJ, Prettyman KM, Virkar AV. High-toughness Ce-Tzp/Al2o3 ceramics with improved hardness and strength. J Am Ceram Soc. 1991;74(1):179–86.Google Scholar
  199. 199.
    Fischer J, Stawarczyk B. Compatibility of machined Ce-TZP/Al2O3 nanocomposite and a veneering ceramic. Dent Mater Off Publ AcadDent Mater. 2007;23(12):1500–5.Google Scholar
  200. 200.
    Fischer J, Stawarczyk B, Trottmann A, Hammerle CHF. Impact of thermal properties of veneering ceramics on the fracture load of layered Ce-TZP/A nanocomposite frameworks. Dent Mater. 2009;25(3):​326–30.PubMedGoogle Scholar
  201. 201.
    Terui Y, Sato K, Goto D, Hotta Y, Tamaki Y, Miyazaki T. Compatibility of Ce-TZP/AI(2)O(3) nanocomposite frameworks and veneering porcelains. Dent Mater J. 2013;32(5):839–46.PubMedGoogle Scholar
  202. 202.
    Anusavice KJ, Kakar K, Ferree N. Which mechanical and physical testing methods are relevant for predicting the clinical performance of ceramic-based dental prostheses? Clin Oral Implants Res. 2007;18 Suppl 3:218–31.PubMedGoogle Scholar
  203. 203.
    Helkimo E, Carlsson GE, Helkimo M. Bite force and state dentition. Acta Odontol Scand. 1976;35:​297–303.Google Scholar
  204. 204.
    Belli R, Geinzer E, Muschweck A, Petzchelt A, Lohbauer U. Mechanical fatigue degradation of ceramics versus composites for dental restorations. Dent Mater Off Publ Acad Dent Mater. 2014;30:​424–32.Google Scholar
  205. 205.
    Guth JF, Zuch T, Zwinge S, Engels J, Stimmelmayr M, Edelhoff D. Optical properties of manually and CAD/CAM-fabricated polymers. Dent Mater J. 2013;32(6):865–71.PubMedGoogle Scholar
  206. 206.
    Koller M, Arnetzl GV, Holly L, et al. Lava ultimate resin nano ceramic for CAD/CAM: customization case study. Int J Comput Dent. 2012;15:159–64.PubMedGoogle Scholar
  207. 207.
    Robinson C, Connell S, Kirkham J, Shore R, Smith A. Dental enamel – a biological ceramic: regular substructures in enamel hydroxyapatite crystals revealed by atomic force microscopy. J Mater Chem. 2004;14(14):2242–8.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Clinical Sciences Department, Faculty of DentistryUniversity of TorontoTorontoCanada

Personalised recommendations