Advertisement

Nanoparticles for Endodontic Disinfection

  • Anil KishenEmail author
  • Annie Shrestha
Chapter

Abstract

The widespread recognition of microbial biofilm as the contributory factor for human infection and constant increase in antimicrobial resistance warrants the discovery of a reliable and effective antimicrobial strategy to combat infectious diseases. Treatment of infected root canals presents with a major challenge of bacterial persistence after treatment. Use of various antibacterial nanoparticles presents as a potential treatment strategy to improve the elimination of biofilm bacteria from the root canal system. Nanoparticles have been developed to improve the root canal disinfection as well as to seal the canal space during root canal treatment. For effective therapeutic effect with nanoparticles, information about the effectiveness of treatment, location of infection, and delivery efficiency of nanoparticles should be well understood. This chapter discusses the current limitations in achieving effective root canal disinfection followed by examples of different nanoparticles that are being developed and tested for this purpose.

Keywords

Nanoparticles Biofilms Root canal Infection Photodynamic therapy Chitosan Silver Bioactive glass 

References

  1. 1.
    Taubes G. The bacteria fight back. Science. 2008;321:356–61.PubMedGoogle Scholar
  2. 2.
    del Pozo JL, Patel R. The challenge of treating biofilm-associated bacterial infections. Clin Pharmacol Ther. 2007;82:204–9.PubMedGoogle Scholar
  3. 3.
    Vakulenko SB, Mobashery S. Versatility of aminoglycosides and prospects for their future. Clin Microbiol Rev. 2003;16:430–50.PubMedCentralPubMedGoogle Scholar
  4. 4.
    Cunha BA. Antibiotic resistance. Control strategies. Crit Care Clin. 1998;14:309–27.PubMedGoogle Scholar
  5. 5.
    Lewis K. Riddle of biofilm resistance. Antimicrob Agents Chemother. 2001;45:999–1007.PubMedCentralPubMedGoogle Scholar
  6. 6.
    Finegold SM. Intestinal microbial changes and disease as a result of antimicrobial use. Pediatr Infect Dis. 1986;5:S88–90.PubMedGoogle Scholar
  7. 7.
    Prevention CfDCa. Antibiotic reistance threats in the United States. 2013.Google Scholar
  8. 8.
    Costerton JW, Lewandowski Z, DeBeer D, Caldwell D, Korber D, James G. Biofilms, the customized microniche. J Bacteriol. 1994;176:2137–42.PubMedCentralPubMedGoogle Scholar
  9. 9.
    Boucher HW, Talbot GH, Benjamin Jr DK, Bradley J, Guidos RJ, Jones RN, et al. 10 x ’20 Progress–development of new drugs active against gram-negative bacilli: an update from the Infectious Diseases Society of America. Clin Infect Dis. 2013;56:1685–94.PubMedCentralPubMedGoogle Scholar
  10. 10.
    Cushing BL, Kolesnichenko VL, O’Connor CJ. Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev. 2004;104:3893–946.PubMedGoogle Scholar
  11. 11.
    Theodore LK, Robert G. Nanotechnology: environmental Implications and Solutions. Hoboken: Wiley; 2005.Google Scholar
  12. 12.
    Salata O. Applications of nanoparticles in biology and medicine. J Nanobiotechnol. 2004;2:3.Google Scholar
  13. 13.
    Stohs SJ, Bagchi D. Oxidative mechanisms in the toxicity of metal-ions. Free Radical Bio Med. 1995;18:321–36.Google Scholar
  14. 14.
    Yoon KY, Byeon JH, Park JH, Hwang J. Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci Total Environ. 2007;373:572–5.PubMedGoogle Scholar
  15. 15.
    Sawai J. Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J Microbiol Methods. 2003;54:177–82.PubMedGoogle Scholar
  16. 16.
    Yamamoto O. Influence of particle size on the antibacterial activity of zinc oxide. Int J Inorg Mater. 2001;3:643–6.Google Scholar
  17. 17.
    Reddy KM, Feris K, Bell J, Wingett DG, Hanley C, Punnoose A. Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl Phys Lett. 2007;90.Google Scholar
  18. 18.
    Sawai J, Shoji S, Igarashi H, Hashimoto A, Kokugan T, Shimizu M, et al. Hydrogen peroxide as an antibacterial factor in zinc oxide powder slurry. J Ferment Bioeng. 1998;86:521–2.Google Scholar
  19. 19.
    Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284:1318–22.PubMedGoogle Scholar
  20. 20.
    Dufour D, Leung V, Levesque CM. Bacterial biofilm: structure, function, and antimicrobial resistance. Endod Topics. 2012;22:2–16.Google Scholar
  21. 21.
    Baumgartner C, Siqueira J, Sedgley C, Kishen A. Microbiology of endodontic disease. In: Ingle’s endodontics. 6th ed. BC Decker Inc: Hamilton; 2008.Google Scholar
  22. 22.
    Costerton JW, Cheng KJ, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, et al. Bacterial biofilms in nature and disease. Annu Rev Microbiol. 1987;41:435–64.PubMedGoogle Scholar
  23. 23.
    Kokare CR, Chakraborty S, Khopade AN, Mahadik KR. Biofilm: importance and applications. Indian J Biotechnol. 2009;8:159–68.Google Scholar
  24. 24.
    Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010;8:623–33.PubMedGoogle Scholar
  25. 25.
    Wells CL, Jechorek RP, Erlandsen SL. Evidence for the translocation of Enterococcus faecalis across the mouse intestinal tract. J Infect Dis. 1990;162:82–90.PubMedGoogle Scholar
  26. 26.
    Gilbert P, Das J, Foley I. Biofilm susceptibility to antimicrobials. Adv Dent Res. 1997;11:160–7.PubMedGoogle Scholar
  27. 27.
    Allison DG, Matthews MJ. Effect of polysaccharide interactions on antibiotic susceptibility of Pseudomonas aeruginosa. J Appl Bacteriol. 1992;73:484–8.PubMedGoogle Scholar
  28. 28.
    Nichols WW, Evans MJ, Slack MP, Walmsley HL. The penetration of antibiotics into aggregates of mucoid and non-mucoid Pseudomonas aeruginosa. J Gen Microbiol. 1989;135:1291–303.PubMedGoogle Scholar
  29. 29.
    Lewis K. Persister cells and the riddle of biofilm survival. Biochemistry (Mosc). 2005;70:267–74.Google Scholar
  30. 30.
    Stewart PS, Franklin MJ. Physiological heterogeneity in biofilms. Nat Rev Microbiol. 2008;6:199–210.PubMedGoogle Scholar
  31. 31.
    Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science. 1998;280:295–8.PubMedGoogle Scholar
  32. 32.
    Lee EW, Huda MN, Kuroda T, Mizushima T, Tsuchiya T. EfrAB, an ABC multidrug efflux pump in Enterococcus faecalis. Antimicrob Agents Chemother. 2003;47:3733–8.PubMedCentralPubMedGoogle Scholar
  33. 33.
    Paulsen IT, Brown MH, Skurray RA. Proton-dependent multidrug efflux systems. Microbiol Rev. 1996;60:575–608.PubMedCentralPubMedGoogle Scholar
  34. 34.
    Kakehashi S, Stanley HR, Fitzgerald RJ. The effects of surgical exposures of dental pulps in germ-free and conventional laboratory rats. Oral Surg Oral Med Oral Pathol. 1965;20:340–9.PubMedGoogle Scholar
  35. 35.
    Walton RE, Ardjmand K. Histological evaluation of the presence of bacteria in induced periapical lesions in monkeys. J Endod. 1992;18:216–27.PubMedGoogle Scholar
  36. 36.
    Marton IJ, Kiss C. Protective and destructive immune reactions in apical periodontitis. Oral Microbiol Immunol. 2000;15:139–50.PubMedGoogle Scholar
  37. 37.
    Siqueira Jr JF, Rocas IN. Community as the unit of pathogenicity: an emerging concept as to the microbial pathogenesis of apical periodontitis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;107:870–8.PubMedGoogle Scholar
  38. 38.
    Ramachandran Nair PN. Light and electron microscopic studies of root canal flora and periapical lesions. J Endod. 1987;13:29–39.PubMedGoogle Scholar
  39. 39.
    Ricucci D, Siqueira Jr JF. Biofilms and apical periodontitis: study of prevalence and association with clinical and histopathologic findings. J Endod. 2010;36:1277–88.PubMedGoogle Scholar
  40. 40.
    Carr GB, Schwartz RS, Schaudinn C, Gorur A, Costerton JW. Ultrastructural examination of failed molar retreatment with secondary apical periodontitis: an examination of endodontic biofilms in an endodontic retreatment failure. J Endod. 2009;35:1303–9.PubMedGoogle Scholar
  41. 41.
    Ricucci D, Siqueira Jr JF, Bate AL, Pitt Ford TR. Histologic investigation of root canal-treated teeth with apical periodontitis: a retrospective study from twenty-four patients. J Endod. 2009;35:493–502.PubMedGoogle Scholar
  42. 42.
    Chavez de Paz LE. Redefining the persistent infection in root canals: possible role of biofilm communities. J Endod. 2007;33:652–62.PubMedGoogle Scholar
  43. 43.
    Sundqvist G. Bacteriological studies of necrotic dental pulps [Dr Odont thesis]. Umea: University of Umea; 1976.Google Scholar
  44. 44.
    Fabricius L, Dahlen G, Ohman AE, Moller AJ. Predominant indigenous oral bacteria isolated from infected root canals after varied times of closure. Scand J Dent Res. 1982;90:134–44.PubMedGoogle Scholar
  45. 45.
    Sundqvist G. Taxonomy, ecology, and pathogenicity of the root canal flora. Oral Surg Oral Med Oral Pathol. 1994;78:522–30.PubMedGoogle Scholar
  46. 46.
    Sakamoto M, Rocas IN, Siqueira Jr JF, Benno Y. Molecular analysis of bacteria in asymptomatic and symptomatic endodontic infections. Oral Microbiol Immunol. 2006;21:112–22.PubMedGoogle Scholar
  47. 47.
    Fabricius L, Dahlen G, Sundqvist G, Happonen RP, Moller AJ. Influence of residual bacteria on periapical tissue healing after chemomechanical treatment and root filling of experimentally infected monkey teeth. Eur J Oral Sci. 2006;114:278–85.PubMedGoogle Scholar
  48. 48.
    Waltimo T, Trope M, Haapasalo M, Orstavik D. Clinical efficacy of treatment procedures in endodontic infection control and one year follow-up of periapical healing. J Endod. 2005;31:863–6.PubMedGoogle Scholar
  49. 49.
    Su L, Gao Y, Yu C, Wang H, Yu Q. Surgical endodontic treatment of refractory periapical periodontitis with extraradicular biofilm. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;110:e40–4.PubMedGoogle Scholar
  50. 50.
    Siqueira Jr JF. Aetiology of root canal treatment failure: why well-treated teeth can fail. Int Endod J. 2001;34:1–10.PubMedGoogle Scholar
  51. 51.
    Sundqvist G, Figdor D, Persson S, Sjogren U. Microbiologic analysis of teeth with failed endodontic treatment and the outcome of conservative re-treatment. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1998;85:86–93.PubMedGoogle Scholar
  52. 52.
    Nair PN, Henry S, Cano V, Vera J. Microbial status of apical root canal system of human mandibular first molars with primary apical periodontitis after “one-visit” endodontic treatment. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005;99:231–52.PubMedGoogle Scholar
  53. 53.
    Bystrom A, Claesson R, Sundqvist G. The antibacterial effect of camphorated paramonochlorophenol, camphorated phenol and calcium hydroxide in the treatment of infected root canals. Endod Dent Traumatol. 1985;1:170–5.PubMedGoogle Scholar
  54. 54.
    Bystrom A, Sundqvist G. Bacteriologic evaluation of the effect of 0.5 percent sodium hypochlorite in endodontic therapy. Oral Surg Oral Med Oral Pathol. 1983;55:307–12.PubMedGoogle Scholar
  55. 55.
    Gilbert GH, Tilashalski KR, Litaker MS, McNeal SF, Boykin MJ, Kessler AW. Outcomes of root canal treatment in Dental Practice-Based Research Network practices. Gen Dent. 2010;58:28–36.PubMedCentralPubMedGoogle Scholar
  56. 56.
    Eriksen H, et al. Epidemiology of apical periodontitis. I. In: Ørstavik D, PittFord T, editors. Essential endodontology. Prevention and treatment of apical periodontitis. London: Blackwell Science; 1998. p. 179–91.Google Scholar
  57. 57.
    Lumley PJ, Lucarotti PS, Burke FJ. Ten-year outcome of root fillings in the General Dental Services in England and Wales. Int Endod J. 2008;41:577–85.PubMedGoogle Scholar
  58. 58.
    Ng YL, Mann V, Gulabivala K. Outcome of secondary root canal treatment: a systematic review of the literature. Int Endod J. 2008;41:1026–46.PubMedGoogle Scholar
  59. 59.
    Ng YL, Mann V, Rahbaran S, Lewsey J, Gulabivala K. Outcome of primary root canal treatment: systematic review of the literature – part 1. Effects of study characteristics on probability of success. Int Endod J. 2007;40:921–39.PubMedGoogle Scholar
  60. 60.
    Abbott PV. Endodontics – current and future. J Conserv Dent. 2012;15:202–5.PubMedCentralPubMedGoogle Scholar
  61. 61.
    Friedman S, Abitbol S, Lawrence HP. Treatment outcome in endodontics: the Toronto Study. Phase 1: initial treatment. J Endod. 2003;29:787–93.PubMedGoogle Scholar
  62. 62.
    Wang N, Knight K, Dao T, Friedman S. Treatment outcome in endodontics-the Toronto Study. Phases I and II: apical surgery. J Endod. 2004;30:751–61.PubMedGoogle Scholar
  63. 63.
    Farzaneh M, Abitbol S, Lawrence HP, Friedman S. Treatment outcome in endodontics-the Toronto Study. Phase II: initial treatment. J Endod. 2004;30:302–9.PubMedGoogle Scholar
  64. 64.
    de Chevigny C, Dao TT, Basrani BR, Marquis V, Farzaneh M, Abitbol S, et al. Treatment outcome in endodontics: the Toronto study–phase 4: initial treatment. J Endod. 2008;34:258–63.PubMedGoogle Scholar
  65. 65.
    de Chevigny C, Dao TT, Basrani BR, Marquis V, Farzaneh M, Abitbol S, et al. Treatment outcome in endodontics: the Toronto study–phases 3 and 4: orthograde retreatment. J Endod. 2008;34:131–7.PubMedGoogle Scholar
  66. 66.
    Barone C, Dao TT, Basrani BB, Wang N, Friedman S. Treatment outcome in endodontics: the Toronto study–phases 3, 4, and 5: apical surgery. J Endod. 2010;36:28–35.PubMedGoogle Scholar
  67. 67.
    Kishen A. Advanced therapeutic options for endodontic biofilms. Endod Topics. 2010;22:99–123.Google Scholar
  68. 68.
    Habelitz S, Balooch M, Marshall SJ, Balooch G, Marshall Jr GW. In situ atomic force microscopy of partially demineralized human dentin collagen fibrils. J Struct Biol. 2002;138:227–36.PubMedGoogle Scholar
  69. 69.
    Prince AS. Biofilms, antimicrobial resistance, and airway infection. N Engl J Med. 2002;347:1110–1.PubMedGoogle Scholar
  70. 70.
    Zehnder M. Root canal irrigants. J Endod. 2006;32:389–98.PubMedGoogle Scholar
  71. 71.
    Bystrom A, Sundqvist G. The antibacterial action of sodium hypochlorite and EDTA in 60 cases of endodontic therapy. Int Endod J. 1985;18:35–40.PubMedGoogle Scholar
  72. 72.
    Shuping GB, Orstavik D, Sigurdsson A, Trope M. Reduction of intracanal bacteria using nickel-titanium rotary instrumentation and various medications. J Endod. 2000;26:751–5.PubMedGoogle Scholar
  73. 73.
    Peters OA, Schonenberger K, Laib A. Effects of four Ni-Ti preparation techniques on root canal geometry assessed by micro computed tomography. Int Endod J. 2001;34:221–30.PubMedGoogle Scholar
  74. 74.
    Paque F, Sirtes G. Apical sealing ability of Resilon/Epiphany versus gutta-percha/AH Plus: immediate and 16-months leakage. Int Endod J. 2007;40:722–9.PubMedGoogle Scholar
  75. 75.
    Manzur A, Gonzalez AM, Pozos A, Silva-Herzog D, Friedman S. Bacterial quantification in teeth with apical periodontitis related to instrumentation and different intracanal medications: a randomized clinical trial. J Endod. 2007;33:114–8.PubMedGoogle Scholar
  76. 76.
    Muzzarelli RA, Isolati A, Ferrero A. Chitosan membranes. Ion Exch Membr. 1974;1:193–6.PubMedGoogle Scholar
  77. 77.
    Agnihotri SA, Mallikarjuna NN, Aminabhavi TM. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release. 2004;100:5–28.PubMedGoogle Scholar
  78. 78.
    Machida Y, Nagai T, Abe M, Sannan T. Use of chitosan and hydroxypropylchitosan in drug formulations to effect sustained release. Drug Des Deliv. 1986;1:119–30.PubMedGoogle Scholar
  79. 79.
    Kumar MN, Muzzarelli RA, Muzzarelli C, Sashiwa H, Domb AJ. Chitosan chemistry and pharmaceutical perspectives. Chem Rev. 2004;104:6017–84.PubMedGoogle Scholar
  80. 80.
    Tan W, Krishnaraj R, Desai TA. Evaluation of nanostructured composite collagen–chitosan matrices for tissue engineering. Tissue Eng. 2001;7:203–10.PubMedGoogle Scholar
  81. 81.
    Bonnett R, Krysteva MA, Lalov IG, Artarsky SV. Water disinfection using photosensitizers immobilized on chitosan. Water Res. 2006;40:1269–75.PubMedGoogle Scholar
  82. 82.
    Wang XH, Li DP, Wang WJ, Feng QL, Cui FZ, Xu YX, et al. Crosslinked collagen/chitosan matrix for artificial livers. Biomaterials. 2003;24:3213–20.PubMedGoogle Scholar
  83. 83.
    Everaerts F, Gillissen M, Torrianni M, Zilla P, Human P, Hendriks M, et al. Reduction of calcification of carbodiimide-processed heart valve tissue by prior blocking of amine groups with monoaldehydes. J Heart Valve Dis. 2006;15:269–77.PubMedGoogle Scholar
  84. 84.
    Shrestha A, Fong SW, Khoo BC, Kishen A. Delivery of antibacterial nanoparticles into dentinal tubules using high-intensity focused ultrasound. J Endod. 2009;35:1028–33.PubMedGoogle Scholar
  85. 85.
    Shrestha A, Shi Z, Neoh KG, Kishen A. Nanoparticulates for antibiofilm treatment and effect of aging on its antibacterial activity. J Endod. 2010;36:1030–5.PubMedGoogle Scholar
  86. 86.
    Muzzarelli R, Tarsi R, Filippini O, Giovanetti E, Biagini G, Varaldo PE. Antimicrobial properties of N-carboxybutyl chitosan. Antimicrob Agents Chemother. 1990;34:2019–23.PubMedCentralPubMedGoogle Scholar
  87. 87.
    Kishen A, Shi Z, Shrestha A, Neoh KG. An investigation on the antibacterial and antibiofilm efficacy of cationic nanoparticulates for root canal disinfection. J Endod. 2008;34:1515–20.PubMedGoogle Scholar
  88. 88.
    Calvo P, Remunan Lopez C, Vila-Jato JL, Alonso MJ. Novel hydrophilic chitosan–polyethylene oxide nanoparticles as protein carriers. J Appl Polym Sci. 1997;63:125–32.Google Scholar
  89. 89.
    Rabea EI, Badawy ME, Stevens CV, Smagghe G, Steurbaut W. Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules. 2003;4:1457–65.PubMedGoogle Scholar
  90. 90.
    Qi L, Xu Z, Jiang X, Hu C, Zou X. Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res. 2004;339:2693–700.PubMedGoogle Scholar
  91. 91.
    No HK, Park NY, Lee SH, Meyers SP. Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int J Food Microbiol. 2002;74:65–72.PubMedGoogle Scholar
  92. 92.
    Liu XF, Guan YL, Yang DZ, Li Z, Yao KD. Antibacterial action of chitosan and carboxymethylated chitosan. J Appl Polym Sci. 2001;79:1324–35.Google Scholar
  93. 93.
    Zehnder M, Luder HU, Schatzle M, Kerosuo E, Waltimo T. A comparative study on the disinfection potentials of bioactive glass S53P4 and calcium hydroxide in contra-lateral human premolars ex vivo. Int Endod J. 2006;39:952–8.PubMedGoogle Scholar
  94. 94.
    Stoor P, Soderling E, Salonen JI. Antibacterial effects of a bioactive glass paste on oral microorganisms. Acta Odontol Scand. 1998;56:161–5.PubMedGoogle Scholar
  95. 95.
    Zehnder M, Baumgartner G, Marquardt K, Paque F. Prevention of bacterial leakage through instrumented root canals by bioactive glass S53P4 and calcium hydroxide suspensions in vitro. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007;103:423–8.PubMedGoogle Scholar
  96. 96.
    Zehnder M, Soderling E, Salonen J, Waltimo T. Preliminary evaluation of bioactive glass S53P4 as an endodontic medication in vitro. J Endodont. 2004;30:220–4.Google Scholar
  97. 97.
    Waltimo T, Mohn D, Paque F, Brunner TJ, Stark WJ, Imfeld T, et al. Fine-tuning of bioactive glass for root canal disinfection. J Dent Res. 2009;88:235–8.PubMedGoogle Scholar
  98. 98.
    Waltimo T, Brunner TJ, Vollenweider M, Stark WJ, Zehnder M. Antimicrobial effect of nanometric bioactive glass 45S5. J Dent Res. 2007;86:754–7.PubMedGoogle Scholar
  99. 99.
    Mortazavi V, Nahrkhalaji MM, Fathi MH, Mousavi SB, Esfahani BN. Antibacterial effects of sol-gel-derived bioactive glass nanoparticle on aerobic bacteria. J Biomed Mater Res A. 2010;94:160–8.PubMedGoogle Scholar
  100. 100.
    Fong J, Wood F. Nanocrystalline silver dressings in wound management: a review. Int J Nanomedicine. 2006;1:441–9.PubMedCentralPubMedGoogle Scholar
  101. 101.
    Chernousova S, Epple M. Silver as antibacterial agent: ion, nanoparticle, and metal. Angewandte Chemie. 2013;52:1636–53.PubMedGoogle Scholar
  102. 102.
    Garcia-Contreras R, Argueta-Figueroa L, Mejia-Rubalcava C, Jimenez-Martinez R, Cuevas-Guajardo S, Sanchez-Reyna PA, et al. Perspectives for the use of silver nanoparticles in dental practice. Int Dent J. 2011;61:297–301.PubMedGoogle Scholar
  103. 103.
    Lansdown AB. Silver in health care: antimicrobial effects and safety in use. Curr Probl Dermatol. 2006;33:17–34.PubMedGoogle Scholar
  104. 104.
    Sotiriou GA, Pratsinis SE. Antibacterial activity of nanosilver ions and particles. Environ Sci Technol. 2010;44:5649–54.PubMedGoogle Scholar
  105. 105.
    Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci. 2004;275:177–82.PubMedGoogle Scholar
  106. 106.
    Chaloupka K, Malam Y, Seifalian AM. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol. 2010;28:580–8.PubMedGoogle Scholar
  107. 107.
    Melo MA, Guedes SF, Xu HH, Rodrigues LK. Nanotechnology-based restorative materials for dental caries management. Trends Biotechnol. 2013;31:459–67.PubMedGoogle Scholar
  108. 108.
    Hiraishi N, Yiu CK, King NM, Tagami J, Tay FR. Antimicrobial efficacy of 3.8 % silver diamine fluoride and its effect on root dentin. J Endod. 2010;36:1026–9.PubMedGoogle Scholar
  109. 109.
    Wu D, Fan W, Kishen A, Gutmann JL, Fan B. Evaluation of the antibacterial efficacy of silver nanoparticles against Enterococcus faecalis biofilm. J Endod. 2014;40:285–90.PubMedGoogle Scholar
  110. 110.
    Gomes-Filho JE, Silva FO, Watanabe S, Cintra LT, Tendoro KV, Dalto LG, et al. Tissue reaction to silver nanoparticles dispersion as an alternative irrigating solution. J Endod. 2010;36:1698–702.PubMedGoogle Scholar
  111. 111.
    Senges C, Wrbas KT, Altenburger M, Follo M, Spitzmuller B, Wittmer A, et al. Bacterial and Candida albicans adhesion on different root canal filling materials and sealers. J Endod. 2011;37:1247–52.PubMedGoogle Scholar
  112. 112.
    George S, Basrani B, Kishen A. Possibilities of gutta-percha-centered infection in endodontically treated teeth: an in vitro study. J Endod. 2010;36:1241–4.PubMedGoogle Scholar
  113. 113.
    Kayaoglu G, Erten H, Alacam T, Orstavik D. Short-term antibacterial activity of root canal sealers towards Enterococcus faecalis. Int Endod J. 2005;38:483–8.PubMedGoogle Scholar
  114. 114.
    Siqueira Jr JF, Favieri A, Gahyva SM, Moraes SR, Lima KC, Lopes HP. Antimicrobial activity and flow rate of newer and established root canal sealers. J Endod. 2000;26:274–7.PubMedGoogle Scholar
  115. 115.
    Orstavik D. Antibacterial properties of root canal sealers, cements and pastes. Int Endod J. 1981;14:125–33.PubMedGoogle Scholar
  116. 116.
    DaSilva L, Finer Y, Friedman S, Basrani B, Kishen A. Biofilm formation within the interface of bovine root dentin treated with conjugated chitosan and sealer containing chitosan nanoparticles. J Endod. 2013;39:249–53.PubMedCentralPubMedGoogle Scholar
  117. 117.
    Barros J, Silva MG, Rodrigues MA, Alves FR, Lopes MA, Pina-Vaz I, et al. Antibacterial, physicochemical and mechanical properties of endodontic sealers containing quaternary ammonium polyethylenimine nanoparticles. Int Endod J. 2014;47:725–34.PubMedGoogle Scholar
  118. 118.
    Abramovitz I, Beyth N, Paz Y, Weiss EI, Matalon S. Antibacterial temporary restorative materials incorporating polyethyleneimine nanoparticles. Quintessence Int. 2013;44:209–16.PubMedGoogle Scholar
  119. 119.
    Kesler Shvero D, Abramovitz I, Zaltsman N, Perez Davidi M, Weiss EI, Beyth N. Towards antibacterial endodontic sealers using quaternary ammonium nanoparticles. Int Endod J. 2013;46:747–54.PubMedGoogle Scholar
  120. 120.
    Beyth N, Kesler Shvero D, Zaltsman N, Houri-Haddad Y, Abramovitz I, Davidi MP, et al. Rapid kill-novel endodontic sealer and Enterococcus faecalis. PLoS One. 2013;8:e78586.PubMedCentralPubMedGoogle Scholar
  121. 121.
    Gao B, Zhang X, Zhu Y. Studies on the preparation and antibacterial properties of quaternized polyethyleneimine. J Biomater Sci Polym Ed. 2007;18:531–44.PubMedGoogle Scholar
  122. 122.
    Mohn D, Bruhin C, Luechinger NA, Stark WJ, Imfeld T, Zehnder M. Composites made of flame-sprayed bioactive glass 45S5 and polymers: bioactivity and immediate sealing properties. Int Endod J. 2010;43:1037–46.PubMedGoogle Scholar
  123. 123.
    Ravindran A, Chandran P, Khan SS. Biofunctionalized silver nanoparticles: advances and prospects. Colloids Surf B Biointerfaces. 2013;105:342–52.PubMedGoogle Scholar
  124. 124.
    Sanvicens N, Marco MP. Multifunctional nanoparticles–properties and prospects for their use in human medicine. Trends Biotechnol. 2008;26:425–33.PubMedGoogle Scholar
  125. 125.
    Veerapandian M, Yun K. Functionalization of biomolecules on nanoparticles: specialized for antibacterial applications. Appl Microbiol Biotechnol. 2011;90:1655–67.PubMedGoogle Scholar
  126. 126.
    Liu L, Xu K, Wang H, Tan PK, Fan W, Venkatraman SS, et al. Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent. Nat Nanotechnol. 2009;4:457–63.PubMedGoogle Scholar
  127. 127.
    Vila A, Sanchez A, Tobio M, Calvo P, Alonso MJ. Design of biodegradable particles for protein delivery. J Control Release. 2002;78:15–24.PubMedGoogle Scholar
  128. 128.
    Fonte P, Andrade JC, Seabra V, Sarmento B. Chitosan-based nanoparticles as delivery systems of therapeutic proteins. Methods Mol Biol. 2012;899:471–87.PubMedGoogle Scholar
  129. 129.
    Fonte P, Andrade F, Araujo F, Andrade C, Neves J, Sarmento B. Chitosan-coated solid lipid nanoparticles for insulin delivery. Methods Enzymol. 2012;508:295–314.PubMedGoogle Scholar
  130. 130.
    Duceppe N, Tabrizian M. Advances in using chitosan-based nanoparticles for in vitro and in vivo drug and gene delivery. Expert Opin Drug Deliv. 2010;7:1191–207.PubMedGoogle Scholar
  131. 131.
    Huang M, Ma Z, Khor E, Lim LY. Uptake of FITC-chitosan nanoparticles by A549 cells. Pharm Res. 2002;19:1488–94.PubMedGoogle Scholar
  132. 132.
    Ishii T, Okahata Y, Sato T. Mechanism of cell transfection with plasmid/chitosan complexes. Biochim Biophys Acta. 2001;1514:51–64.PubMedGoogle Scholar
  133. 133.
    Motwani SK, Chopra S, Talegaonkar S, Kohli K, Ahmad FJ, Khar RK. Chitosan-sodium alginate nanoparticles as submicroscopic reservoirs for ocular delivery: formulation, optimisation and in vitro characterisation. Eur J Pharm Biopharm. 2008;68:513–25.PubMedGoogle Scholar
  134. 134.
    Jain D, Banerjee R. Comparison of ciprofloxacin hydrochloride-loaded protein, lipid, and chitosan nanoparticles for drug delivery. J Biomed Mater Res B Appl Biomater. 2008;86:105–12.PubMedGoogle Scholar
  135. 135.
    Shrestha A, Hamblin MR, Kishen A. Photoactivated rose bengal functionalized chitosan nanoparticles produce antibacterial/biofilm activity and stabilize dentin-collagen. Nanomedicine. 2014;10:491–501.PubMedGoogle Scholar
  136. 136.
    Shrestha A, Kishen A. Antibiofilm efficacy of photosensitizer-functionalized bioactive nanoparticles on multispecies biofilm. J Endod. 2014;40(10):1604–10.PubMedGoogle Scholar
  137. 137.
    Perni S, Prokopovich P, Pratten J, Parkin IP, Wilson M. Nanoparticles: their potential use in antibacterial photodynamic therapy. Photochem Photobiol Sci. 2011;10:712–20.PubMedGoogle Scholar
  138. 138.
    Wilson RF. Nanotechnology: the challenge of regulating known unknowns. J Law Med Ethics. 2006;34:704–13.PubMedGoogle Scholar
  139. 139.
    Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, et al. Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res. 2008;42:4591–602.PubMedGoogle Scholar
  140. 140.
    Guo Y, Rogelj S, Zhang P. Rose Bengal-decorated silica nanoparticles as photosensitizers for inactivation of gram-positive bacteria. Nanotechnology. 2010;21:065102.PubMedGoogle Scholar
  141. 141.
    Pagonis TC, Chen J, Fontana CR, Devalapally H, Ruggiero K, Song X, et al. Nanoparticle-based endodontic antimicrobial photodynamic therapy. J Endod. 2010;36:322–8.PubMedCentralPubMedGoogle Scholar
  142. 142.
    Bezman SA, Burtis PA, Izod TP, Thayer MA. Photodynamic inactivation of E. coli by rose bengal immobilized on polystyrene beads. Photochem Photobiol. 1978;28:325–9.PubMedGoogle Scholar
  143. 143.
    Moczek L, Nowakowska M. Novel water-soluble photosensitizers from chitosan. Biomacromolecules. 2007;8:433–8.PubMedGoogle Scholar
  144. 144.
    Nowakowska M, Moczek L, Szczubialka K. Photoactive modified chitosan. Biomacromolecules. 2008;9:1631–6.PubMedGoogle Scholar
  145. 145.
    Shrestha A, Kishen A. Photodynamic therapy for inactivating endodontic bacterial biofilms and effect of tissue inhibitors on antibacterial efficacy. Proc Spie. 2013;8566.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Endodontics, Faculty of DentistryUniversity of TorontoTorontoCanada

Personalised recommendations